Problems on Techniques of Integration

Use the Integration by Parts. Set

\begin{displaymath}\left\{\begin{array}{lll}
u &=&x\\
dv &=& \sin(3x)dx\;.
\end{array}\right.\end{displaymath}

Then

\begin{displaymath}\left\{\begin{array}{lll}
du &=&dx\\
v &=&\displaystyle - \frac{1}{3}\cos(x)\;.
\end{array}\right.\end{displaymath}

So

\begin{displaymath}\int x \sin(3 x) dx = - x \frac{1}{3}\cos(x) - \int - \frac{1}{3}\cos(x) dx \end{displaymath}

or

\begin{displaymath}\int x \sin(3 x) dx =- \frac{x}{3}\cos(x) + \frac{1}{3}\sin(x) + C \;.\end{displaymath}

Detailed Answer.


If you prefer to jump to the next problem, click on Next Problem below.

[Next Problem] [Matrix Algebra]
[Trigonometry] [Calculus]
[Geometry] [Algebra]
[Differential Equations] [Complex Variables]

S.O.S MATHematics home page

Copyright © 1999-2004 MathMedics, LLC. All rights reserved.
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA