Problems on Techniques of Integration

Use the Integration by Parts. Set

\begin{displaymath}\left\{\begin{array}{lll}
u &=&x\\
dv &=& \cos(x)dx\;.
\end{array}\right.\end{displaymath}

Then

\begin{displaymath}\left\{\begin{array}{lll}
du &=&dx\\
v &=& \sin(x)\;.
\end{array}\right.\end{displaymath}

So

\begin{displaymath}\int x \cos(x) dx = x \sin(x) - \int sin(x) dx \end{displaymath}

or

\begin{displaymath}\int x \cos(x) dx = x \sin(x) - [-\cos(x)] + C = x \sin(x) + \cos(x) + C\;.\end{displaymath}

Detailed Answer.


If you prefer to jump to the next problem, click on Next Problem below.

[Next Problem] [Matrix Algebra]
[Trigonometry] [Calculus]
[Geometry] [Algebra]
[Differential Equations] [Complex Variables]

S.O.S MATHematics home page

Copyright © 1999-2004 MathMedics, LLC. All rights reserved.
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA