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1 Introduction

First attemps to generalize the classical function spaces of the Lebesgue type
Lp were made in the early 1930’s by Orlicz and Birnbaum1 in connection with
orthogonal expansions. Their approach consisted in considering spaces of
functions with some growth properties different from the power type growth
control provided by the Lp-norms. Namely, they considered the function
spaces defined as follows:

Lϕ =
{
f : < → <; ∃λ > 0 :

∫
<

ϕ(λ|f(x)|) dx < ∞
}
,

where ϕ : [0,∞] → [0,∞] was assumed to be a convex function increasing
to infinity, i.e. the function which to some extent behaves similarly to power
functions ϕ(t) = tp. Later on, the assumption of convexity for Orlicz func-
tions ϕ was frequently omitted. Let us mention two typical examples of such

1The author would like to apologize to the reader for not including the references
whithin the paper.
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functions:
ϕ(t) = et − 1 , ϕ(t) = ln(1 + t) .

The possibility of introducing the structure of a linear metric in Lϕ as well
as the interesting properties of these spaces and many applications to differ-
ential and integral equations with kernels of nonpower types were among the
reasons for the development of the theory of Orlicz spaces, their applications
and generalizations for more than half of the century. Recent interest in clas-
sical Orlicz spaces has emerged in connection with problems of convexity, the
Boyd indices and rearrangement invariant function spaces.

We may observe two principal directions of further development. The first
one is a theory of Banach function spaces initiated in 1955 by Luxemburg
and then developped in a series of joint papers with Zaanen. The main idea
of that theory consists in considering a function space L of all functions
f : X → <, f ∈ M(X,<), such that ||f || < ∞, where (X, Σ, µ) is a measure
space, M(X, S) denotes the space of all strongly measurable functions acting
from X into a Banach space S and ||.|| is a function norm which satisfies

||f || ≤ ||g|| whenever |f(x)| ≤ |g(x)| µ-a.e.

The other way, also inspired by the successful theory of Orlicz spaces, is
based on replacing the particular, integral form of the nonlinear functional,
which controls the growth of members of the space, by an abstractly given
functional with some good properties . This idea was the basis of the theory
of modular spaces initiated by Nakano in 1950 in connection with the theory
of order spaces and redefined and generalized by Luxemburg and Orlicz in
1959. Let us give a brief account of some basic facts of their theory.

Let X be a vector space over < (we may take the complex field as the
scalar set for the vector space). A functional ρ : X → [0,∞] is called a
pseudomodular, if for arbitrary f and g, elements of X , there holds :

(1) ρ(0) = 0;

(2) ρ(αf) = ρ(f) whenever |α| = 1,

(3) ρ(αf + βg) ≤ ρ(f) + ρ(g) whenever α, β ≥ 0 and α + β = 1.
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If we replace (3) by

(3’) ρ(αf + βg) ≤ αρ(f) + βρ(g) whenever α, β ≥ 0 and α + β = 1.

then the pseudomodular ρ is called convex. If in place of (1) there holds

(1’) ρ(0) = 0; and ρ(λf) = 0 for all λ > 0 implies f = 0,

then ρ is called a semimodular. If moreover,

(1”) ρ(f) = 0 if and only if f = 0

then ρ is called a modular. If ρ is a pseudomodular in X then the set defined
by

Xρ = {h ∈ X ; lim
λ→0

ρ(λh) = 0}

is called a modular space. Xρ is a vector subspace of X . For a pseudomodular
ρ in X we may define an F-seminorm by the formula :

||f ||ρ = inf
{
t > 0 ; ρ

(
f

t

)
≤ t

}
.

If ρ is a convex pseudomodular then the functional given by

||f ||ρ = inf
{
t > 0 ; ρ

(
f

t

)
≤ 1

}
.

is a seminorm. Observe that the previous formulas define F-norms and norms
respectively, if ρ is a modular. One can check that

||fn − f ||ρ → 0 is equivalent to ρ(t(fn − f)) → 0 for all t > 0.

It is also an important fact that ρ(f) ≤ ||f ||ρ provided ||f ||ρ < 1.

We say that a sequence (fn) is modular convergent (briefly: ρ-convergent)
to f ∈ Xρ if there exists a λ > 0 such that ρ(λ(fn − f)) → 0 as n → ∞. A
modular ρ is called :

(a) Right-continuous, if for all f ∈ Xρ, we have

lim
t→1+

ρ(tf) = ρ(f)
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(b) Left-continuous, if for all f ∈ Xρ, we have

lim
t→1−

ρ(tf) = ρ(f)

(c) Continuous, if it is both right and left continuous.

In this way, the Orlicz space becomes a modular space, where X =
M(X,<) and the modular ρ is defined by

ρ(f) =
∫
<

ϕ
(
|f(x)|

)
dx.

On the base of the modular theory Musielak and Orlicz founded in 1959 a
theory of Musielak-Orlicz spaces, i.e. the modular spaces induced by modu-
lars of the following form:

ρ(f) =
∫
<

ϕ
(
x, |f(x)|

)
dx.

where ϕ : X ×<+ → <+ is a function, continuous and increasing to infinity
in the second variable, and is measurable in the first one. Such spaces have
been studied for almost forty years and there is known a large set of applica-
tions of such spaces in variuous parts of analysis. They were also generalized
in many directions, e.g. some generalizations to the case of vector valued
functions have been considered and many authors have investigated spaces
generated by families of Musielak-Orlicz modulars. Such spaces have many
applications in probability and mathematical statistics.

We may observe, however, the situation where on the one hand we have
a very abstract general theory of modular spaces which cannot give proper
answers to many interesting questions and, on the other hand, spaces con-
structed on the image of Musielak-Orlicz spaces. In the latter case, the
concepts from Musielak-Orlicz theory do not fit the new demands. Another
common difficulty consists in the fact that the theory of Musielak-Orlicz
spaces, though very useful, is not structural, in the sense that many oper-
ations like taking sums or passing to equivalent modulars lead beyond the
class of Musielak-Orlicz spaces.

In this work, we will investigate modular spaces which lies somewhere in
between, i.e. class of modular spaces given by modulars or semimodulars not
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of any particular forms but, nevertheless, having much more convenient prop-
erties than the abstract modulars can possess. In other words, we present a
useful tool for applications whenever there is a need to introduce a function
space by means of functionals which have some reasonable properties but
which are far from being norms or F-norms.

Bibliographical remarks

The monographic exposition of the theory of Orlicz spaces may be found in
the book of Krasnosel’skii and Rutickii. For a current review of the theory
of Musielak-Orlicz spaces and modular spaces the reader is referred to the
book of Musielak and the most recent book of Kozlowski.

2 Basic definitions and results

We start with a brief recollection of basic concepts and facts of the theory of
modular spaces as formulated by Kozlowski.

Definition 1. Let X be an arbitrary vector space.

(a) A functional ρ : X → [0,∞] is called a modular if for arbitrary x,y in
X,

(i) ρ(x) = 0 iff x = 0,

(ii) ρ(α x) = ρ(x) for every scalar α with |α| = 1,

(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α + β = 1 and α ≥ 0, β ≥ 0.

(b) If (iii) is replaced by

(iii)’ ρ(αx + βy) ≤ αρ(x) + βρ(y) if α + β = 1 and α ≥ 0, β ≥ 0,

we say that ρ is a convex modular.

(c) A modular ρ defines a corresponding modular space, i.e the vector space
Xρ given by

Xρ = {x ∈ X; ρ(λx) → 0 as λ → 0}.
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In general the modular ρ is not subadditive and therefore does not behave
as a norm or a distance. But one can associate to a modular an F -norm.
Recall that a functional ||.|| : X → [0,∞] defines an F -norm if and only if

(1) ||x|| = 0 if and only if x = 0,

(2) ||αx|| = ||x|| whenever |α| = 1,

(3) ||x + y|| ≤ ||x||+ ||y||,

(4) ||αnxn − αx|| → 0 if αn → α and ||xn − x|| → 0.

An F -norm defines a distance on X by

d(x, y) = ||x− y||.

The linear metric space (X, d) is called an F -space if d is complete.

Definition 2. The modular space Xρ can be equipped with an F -norm de-
fined by

||x||ρ = inf
{
α > 0; ρ

(
x

α

)
≤ α

}
.

When ρ is convex the formula

||x||ρ = inf
{
α > 0; ρ

(
x

α

)
≤ 1

}
.

defines a norm which is frequently called the Luxemburg norm.

It is clear that ||xn||ρ → 0 if and only if ρ(βxn) → 0 for every β > 0. One
can easily observe that α → ρ(αx) is increasing for every x ∈ X.
As a classical example we may give the Orlicz’ modular defined for every
measurable real function f by the formula

ρ(f) =
∫
<

ϕ(|f(t)|)dm(t),

where m denotes the Lebesgue measure in < and ϕ : < → [0,∞) is continu-
ous, ϕ(0) = 0 and ϕ(t) →∞ as t →∞.
The modular space induced by the Orlicz’ modular ρϕ is called the Orlicz
space Lϕ.
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Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of
Ω. Let P be a δ-ring of subsets of Σ, such that E ∩ A ∈ P for any E ∈ P
and A ∈ Σ. Let us assume that there exists an increasing sequence of sets
Kn ∈ P such that Ω =

⋃
Kn. In an other word, the family P plays the role

of the δ-ring of subsets of finite measure. By E we denote the linear space of
all simple functions with supports from P . By M we will denote the space of
all measurable functions, i.e. all functions f : Ω → < such that there exists
a sequence {gn} ∈ E , |gn| ≤ |f | and gn(ω) → f(ω) for all ω ∈ Ω. By 1A we
denote the characteristic function of the set A.

Let us add that a set function µ : Σ → [0,∞] is called a σ-subadditive
measure if

(i) µ(∅) = 0,

(ii) µ(A) ≤ µ(B) for any A ⊂ B,

(iii) µ(
⋃

An) ≤ ∑
µ(An) for any sequence of sets An ∈ Σ.

Definition 3. A functional ρ : E × Σ → [0,∞] is called a function modular
if

(P1) ρ(0, E) = 0 for any E ∈ Σ,

(P2) ρ(f, E) ≤ ρ(g, E) whenever |f(ω) ≤ |g(ω)| for any ω ∈ Ω, f, g ∈ E and
E ∈ Σ,

(P3) ρ(f, .) : Σ → [0,∞] is a σ-subadditive measure for every f ∈ E ,

(P4) ρ(α, A) → 0 as α decreases to 0 for every A ∈ P , where ρ(α, A) =
ρ(α1A, A),

(P5) if there exists α > 0 such that ρ(α, A) = 0, then ρ(β, A) = 0 for every
β > 0,

(P6) for any α > 0 ρ(α, .) is order continuous on P , that is ρ(α, An) → 0 if
{An} ∈ P and decreases to ∅.

The definition of ρ is then extended to f ∈M by

ρ(f, E) = sup{ρ(g, E); g ∈ E , |g(ω)| ≤ |f(ω)| ω ∈ Ω}.
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This will enable us to define ρ(α, E) for sets E not in P ; for the sake of
simplicity, we write ρ(f) instead of ρ(f, Ω).

Definition 4. A set E is said to be ρ-null if and only if ρ(α, E) = 0 for
α > 0. A property p(ω) is said to hold ρ-almost everywhere (ρ-a.e.) if the
set {ω ∈ Ω; p(ω) does not hold } is ρ-null. For example we will say fre-
quently fn → f ρ-a.e.

Note that a countable union of ρ-null sets is still ρ-null. In the sequel
we will identify sets A and B whose symmetric difference A∆B is ρ-null;
similarly we will identify measurable functions which differ only on a ρ-null
set.

It is easy to see that the functional ρ : M→ [0,∞] is a modular in the
sense of Definition 1. The modular space determined by ρ will be called a
modular function space and will be denoted by Lρ. Recall that

Lρ = {f ∈M; lim
α→0

ρ(α f) = 0}.

Let us recall some basic facts about modular function spaces.

Theorem 1.

(1) (Lρ, ||.||ρ) is a complete space and the F -norm ||.||ρ is monotone with
respect to the natural order in M.

(2) If there is a number α > 0 such that ρ(α(fn−f)) → 0 then there exists
a subsequence {gn} of {fn} such that gn → f ρ-a.e.

(3) (Egoroff’s Theorem) If fn → f ρ-a.e. then there exists an increas-
ing sequence of sets Hk ∈ P such that Ω =

⋃
Hk and {fn} converges

uniformly to f on every Hk.

(4) Define
L0

ρ = {f ∈M; ρ(f, .) is order continuous}

and
Eρ = {f ∈M; αf ∈ L0

ρ for every α > 0}.

Then
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(4.1) Eρ ⊂ L0
ρ ⊂ Lρ,

(4.2) Eρ has the Lebesgue property, i.e. ||f 1Dn||ρ → 0 if f ∈ Eρ and
Dn decreases to ∅,

(4.3) Eρ is the closure of E (in the sense of ||.||ρ).

(5) (Vitali’s Theorem) If fn ∈ Eρ and fn → f ∈ Lρ ρ-a.e., then the
following conditions are equivalent

(i) f ∈ Eρ and ||fn − f ||ρ → 0,

(ii) for every α > 0 the subadditive measures ρ(αfn, .) are equicontin-
uous, i.e.

lim
k→∞

sup
n

ρ(αfn, Dk) = 0,

for every sequence {Dk} ∈ Σ that decreases to ∅.

(6) (Lebesgue’s Theorem) If fn, f ∈ M, fn → f ρ-a.e. and there exists a
function g ∈ Eρ such that |fn| ≤ |g| ρ-a.e. for all n, then ||fn−f ||ρ → 0.

(7) For fn, f ∈M, the following conditions are equivalent

(i) ρ has the Fatou property, i.e.

ρ(fn) ↑ ρ(f) whenever |fn| ↑ |f | ρ− a.e.

(ii) ρ is a left continuous modular, i.e.

ρ(αn f) ↑ ρ(f) whenever αn ↑ 1.

(iii) ρ(f) ≤ lim inf ρ(fn) whenever fn → f ρ-a.e.

(8) A function modular is said to satisfy the ∆2-condition if sup ρ(2fn, Dk) →
0 as k →∞ whenever Dk decreases to ∅ and sup ρ(fn, Dk) → 0.

It is known that ∆2 is equivalent to the equality Eρ = Lρ. The other
characterization is as follows: ρ satisfies the ∆2 condition if and only if F -
norm convergence and modular convergence are equivalent.

Definition 5.

(a) The sequence {fn} ⊂ Lρ is said to be ρ-convergent to f ∈ Lρ if ρ(fn −
f) → 0 as n →∞,
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(b) The sequence {fn} ⊂ Lρ is said to be ρ-Cauchy if ρ(fn − fm) → 0 as n
and m go to ∞,

(c) A subset C of Lρ is called ρ-closed if the ρ-limit of a ρ-convergent
sequence of C always belongs to C.

(d) A subset C of Lρ is called ρ-compact if every sequence in C has a
ρ-convergent subsequence in C.

(e) A subset C of Lρ is called ρ-bounded if

δρ(C) = sup{ρ(f − g); f, g ∈ C} < ∞,

(f) Let f ∈ Lρ and C ⊂ Lρ. Define the ρ-distance between f and C as :

δρ(f, C) = inf{ρ(f − g); g ∈ C}.

The above terminology is used because of its formal similarity to the met-
ric case. Since ρ does not behave in general as a distance, one should be very
careful when dealing with these notions. In particular, ρ-convergence does
not imply ρ-Cauchy since ρ does not satisfy the triangle inequality. In fact,
one can show that this will happen if and only if ρ satisfies the ∆2-condition.

Remarks.

(1) Since the intersection of ρ-closed sets is ρ-closed, one can associate to
any subset A ⊂ Lρ, a ρ-closed subset, denoted Ā, which is minimal in
the following sense:

if A ⊂ B and B is ρ-closed, then Ā ⊂ B

We will call Ā the ρ-closure of A.

(2) We have an easy characterization of the Fatou property in terms of ρ-
balls. Indeed, one can easily check that ρ-balls are ρ-closed if and only
if ρ has the Fatou property. Recall the definition of the ρ-ball Bρ(f, r),
where f ∈ Lρ and r ≥ 0, as

Bρ(f, r) = {h ∈ Lρ; ρ(f − h) ≤ r}.

f and r are called respectively the center and the radius of the ρ-ball
Bρ(f, r).
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In Banach spaces, when we think of reflexivity automatically the dual
space is present in our taught. But in modular spaces, it is very hard to
conceive the dual space. To circumvent the problem, we use some character-
izations of reflexivity.

Definition 6. Let Xρ be a modular space.

(a) We will say that Xρ or ρ satisfy the property (R) if and only if every
decreasing sequence of nonempty ρ-closed and ρ-bounded convex subset
of Xρ, has a nonempty intersection.

(b) We will say that Xρ or ρ satisfy the property (R′) if and only if for
every ρ-bounded sequence (fn) ⊂ Xρ, there exists a subsequence (fn′)
of (fn) such that the intersection of (cl(conv{fi′ ; i ≥ n})) is nonempty
and reduced to one point.

By cl(conv{A}), we mean the ρ-closure of the smallest convex subset
containing A. Clearly the property (R′) implies the property (R) and are
equivalent in Banach spaces.

Before we give few examples of modular function spaces we will need the
following definition.

Definition 7. Let (Ω, Σ, µ) be a measure space. A real function ϕ defined
on Ω × <+ will be said to belong to the class Φ if the following conditions
are satisfied :

(i) ϕ(ω, u) is a nondecreasing continuous function of u such that ϕ(ω, 0) =
0, ϕ(ω, u) > 0 for u > 0 and ϕ(ω, u) →∞ as u →∞,

(ii) ϕ(ω, u) is a Σ-measurable function of ω for all u ≥ 0,

(iii) ϕ(ω, u) is a convex function of u, for all ω ∈ Ω.

For the sake of generality some authors will not assume that ϕ(ω, u) is a
convex function of u. Although the results in this work can be easily gen-
eralized into their setting, it is not the feeling of the author that this will
change anything to the general idea.

Examples.
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(1) It is easy to check that Orlicz spaces are modular function spaces.
Similarly Musielak-Orlicz spaces, i.e. spaces determined by a modular
of the form

ρ(f, E) =
∫

E
ϕ(t, |f(t)|)dµ(t),

are modular function spaces, provided ϕ belongs to the class Φ. For
the precise definitions and properties of Musielak-Orlicz spaces see the
book by Musielak, where they are called generalized Orlicz spaces. The
particular case when

ϕ(t, s) = sp, for 1 ≤ p < ∞,

gives the classical Lp-spaces. The Luxemburg’s norm is the classical
Lp-norm. Moreover we have

ρ(f) = ||f ||pLp .

Let us add that Musielak-Orlicz modular spaces are complete for the
modular.

(2) Suppose M is a family of σ-additive measures on (Ω, Σ), and ϕ ∈ Φ.
One can prove that

ρ(f, E) = sup
τ∈M

∫
E

ϕ(t, |f(t)|)dµ(t),

is a function modular. As an example of function spaces determined
by a function modular of this type we can mention the Lorentz type
Lp-spaces, where

ρ(f, E) = sup
τ∈T

∫
E
|f(t)|pdµτ (t).

Here µ is a fixed σ-finite measure on Ω, T is any set of measurable,
invertible transformations τ : Ω → Ω and µτ (E) = µ(τ−1(E)).

3 Some fixed points theorems in Modular spaces

In this section we discuss the existence of fixed points for mappings which
are nonexpansive or contractive in the modular sense. Certainly, one can
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also consider mappings which are contractive with respect to the F -norm in-
duced by the modular. It is worth to mention that, generally speaking, there
is no natural relation between the two kinds of nonexpansiveness. Once again
we would like to emphasize our philosophy that all the results expressed in
terms of modulars are more convenient in the sense that their assumptions
are much easier to verify.

Definition 8. Let C be a subset of a modular space Lρ and let T : C → C
be an arbitrary mapping.

(1) T is a ρ-contraction if there exists λ < 1 such that

ρ(T (f)− T (g)) ≤ λ ρ(f − g)

for all f, g ∈ C.

(2) T is said to be ρ-nonexpansive if

ρ(T (f)− T (g)) ≤ ρ(f − g)

for all f, g ∈ C.

(3) f ∈ C is said to be a fixed point of T if T (f) = f . The fixed point set
of T will be denoted Fix(T ).

C will be said to have the fixed point property if every ρ-nonexpansive self-
map defined on C has a fixed point.

An analog to banach contraction principle, can be stated as follows.

Theorem 2. Let C be ρ-complete ρ-bounded subset of Lρ and T : C → C be
a ρ-strict contraction. Then T has a unique fixed point z ∈ C. Moreover z
is the ρ-limit of the iterate of any point in C under the action of T .

Recall that a subset D of Lρ is said to be ρ-complete if every ρ-Cauchy
sequence from D is convergent in D.

We may relax the assumption regarding the boundedness of C and assume
there exists a bounded orbit instead. In this case, the uniqueness of the fixed
point is dropped and replaced by

if f and g are two fixed points of T such that ρ(f − g) < ∞, then f = g .

13



In order to discuss our first result regarding ρ-nonexpansive mappings,
we need the following definition.

Definition 9. The growth function wρ of a function modular ρ is defined as
follows:

wρ(t) = sup

{
ρ(tf)

ρ(f)
; f ∈ Lρ, 0 < ρ(f) < ∞

}
, t ≥ 0.

Observe that wρ(t) ≤ 1 for all t ∈ [0, 1].

Definition 10. We say that ρ satisfies the regular growth condition if wρ(t) <
1 for all t ∈ [0, 1).

The class of function modulars that satisfies the regular growth condition
is quite large. For instance, if ρ is convex that ρ(tf) ≤ tρ(f) for t ∈ [0, 1],
and consequently wρ(t) ≤ t < 1 for t < 1. Thus all convex function modulars
satisfy the regular growth condition. It is not hard to prove that if ρ is an
Orlicz modular then, in the case of finite measure, ρ satisfies the regular
growth condition if and only if

lim sup
s→∞

ϕ(ts)

ϕ(s)
< 1 , for all t ∈ [0, 1)

where ϕ denotes the Orlicz function associated with ρ. If there exists a
constant K > 0 such that ρ(2f) ≤ Kρ(f) for all f ∈ Lρ, then wρ is sub-
multiplicative and hence there exists p > 1 such that wρ(t) ≤ tp for t < 1.
Consequently, such function modulars also satisfy the regular growth condi-
tion.

Recall that a set B ⊂ Lρ is said to be star-shaped if there exists f ∈ B
such that f + λ(g − f) ∈ B whenever λ ∈ [0, 1] and g ∈ B.

Theorem 3. Assume that ρ has Fatou property and satisfies the regular
growth condition. Let B be a star-shaped ρ-bounded and (ρ-a.e.)-compact
subset of Lρ such that B − B ⊂ L0

ρ. Assume in addition that for every se-
quence of functions fn ∈ B such that fn → f ρ-a.e. with f ∈ B and for
every sequence of sets Gk ↓ ∅,

(?) lim
k→∞

(
sup

n
ρ(fn − f, Gk)

)
= 0.
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If T : B → B is ρ-nonexpansive, then it has a fixed point.

Remarks.

(1) Observe that for some important modular function spaces, e.g. Or-
licz and Musielak-orlicz spaces, the fact B − B ⊂ L0

ρ follows from B
ρ-bounded. Indeed, order continuity of ρ(f − g, .) is in such spaces
equivalent to ρ(f − g) < ∞.

(2) Instead of assuming ρ has Fatou property, we may assume that

ρ(f, H) ≤ lim inf
n→∞

ρ(fn, H)

for every H ∈ P such that fn converges uniformly to f on H, where fn

and f belong to L0
ρ. Note that this condition is equivalent to Bρ(r)∩L0

ρ

is (ρ-a.e.)-closed in L0
ρ for all r > 0, where Bρ(r) is the ρ-ball centered

at 0 with radius r.

(3) An example of a set B satisfying the condition (?) such that B−B ∈ L0
ρ

is provided by a set B such that B − B ⊂ {f ∈ Lρ; |f(x)| ≤ |g(x)|}
where g ∈ L0

ρ.

As mentionned before, one of the reasons of our interest in ρ-behavior of
mappings is that the F-norm associated to the function modular is defined in
an indirect way and consequetly harder to handle than the function modular.
Therefore, one may ask what is the relationship, if there is any, between the
F-norm nonexpansiveness and the ρ-nonexpansiveness. We have the follow-
ing partial answer.

Proposition 1. Let ρ be a convex, left-continuous function modular. If

ρ

(
λ
(
T (f)− T (g)

))
≤ ρ

(
λ(f − g)

)

for every λ > 0, then ||T (f)− T (g)||ρ ≤ ||f − g||ρ.

Example. Let X = (0,∞) and Σ be the σ-algebra of all Lebesgue measurable
subsets of X. Let P denote the δ-ring of subsets of finite measure. Define a
function modular by

ρ(f) =
1

e2

∫ ∞

0
|f(x)|x+1dm(x).

15



Let B be the set of all measurable functions f : (0,∞) → < such that
0 ≤ f(x) ≤ 1/2. Consider the map

T (f)(x) =

{
f(x− 1), for x ≥ 1
0, for x ∈ [0, 1].

Clearly, we have T (B) ⊂ B. For every f, g ∈ B and λ ≤ 1, we have

ρ

(
λ
(
T (f)− T (g)

))
≤ λρ

(
λ(f − g)

)
,

which implies that T is ρ-nonexpansive. On the other hand, if we take
f = 1[0,1], then

||T (f)||ρ > e ≥ ||f ||ρ,

which clearly implies that T is not ||.||ρ-nonexpansive. Note that T is linear.

Remark on Alspach counterexample. Define the operator

T (f)(x) =

{
min{2, 2f(x)}, for x ∈ [0, 1/2]
max{0, 2f(2x− 1)− 2} for x ∈ (1/2, 1]

on C, a convex subset of L1[0, 1], defined by

C =
{
f ∈ L1[0, 1]; 0 ≤ f(x) ≤ 2 a.e. and

∫ 1

0
f(x)dx = 1

}
.

The operator T is an isometry on C, with an empty fixed point set. It seems
that the condition

∫ 1
0 f(x)dx = 1 is “responsible” for the nonexistence of a

fixed point. Note that Theorem 3 gives “an intrinsic” reason why T , defined
on B = {f ∈ L1[0, 1]; 0 ≤ f(x) ≤ 2 a.e.}, must have a fixed point while
T : C → C does not have to. Moreover, we do not refer to any geometrical
properties of subspaces of L1 (observe that even the convexity of B is not
essential here).

In the next section we will discuss the concept of normal structure prop-
erties in the modular sense and state Kirk’s fixed point theorem.
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4 Normal structure in modular spaces

The concept of normal structure was introduced by Brodskii and Milmann
for the case of linear normed spaces. Kirk was the first to link this concept
to existence of fixed point of nonexpansive mappings. There were some at-
tempts to generalize the concept of normal structure to metric spaces and
more abstract sets. In this section we define normal structure for function
modulars.

Definition 11. Let B be a ρ-bounded subset of Lρ.

(a) By the ρ-diameter of B, we will understand the number

δρ(B) = sup{ρ(f − g); f, g ∈ B}.

(b) The quantity rρ(f, B) = sup{ρ(f − g); g ∈ B} will be called the ρ-
Chebyshev radius of B with respect to f .

(c) The ρ-Chebyshev radius of B is defined by Rρ(B) = inf{rρ(f, B); f ∈
B}.

(d) The ρ-Chebyshev center of B is defined as the set

Cρ(B) =
{
f ∈ B; rρ(f, B) = Rρ(B)

}
.

Note that Rρ(B) ≤ rρ(f, B) ≤ δρ(B) for all f ∈ B and observe that there is
no reason, in general, for Cρ(B) to be nonempty.

Definition 12. Let B be a ρ-bounded subset of Lρ.

(a) We say that f is a ρ-diametral point of B if rρ(f, B) = δρ(B) .

(b) The set B is called ρ-diametral if every f ∈ B is a ρ-diametral point of
B.

(c) A sequence {fn} from Lρ is called a ρ-diametral sequence if there exists
c > 0 such that δρ(fn) ≤ c and

lim
n→∞

distρ
(
fn+1, conv(f1, .., fn)

)
= c.
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where distρ
(
f, A

)
= inf{ρ(f − g); g ∈ A} and

conv(f1, .., fn) =
{ n∑

i=1

αifi ; αi ≥ 0 and
∑

i αi = 1
}
.

Let us observe that distρ
(
fn+1, conv(f1, .., fn)

)
≤ nc, while in the norm

case this distance can be estimated by the number c itself.

Definition 13. Let B be a ρ-bounded subset of Lρ.

(a) We say that A is an admissible subset of B if

A =
⋂
i∈I

Bρ(bi, ri) ∩B ,

where bi ∈ B, ri ≥ 0 and I is an arbitrary index set.

(b) If C is a subset of B, we let

co(C) =
⋂

f∈C

Bρ

(
f, rρ(f, C)

)
∩B .

(c) B is said to have ρ-normal structure property if each ρ-admissible sub-
set A of B, not reduced to a single point, has a point which is not
ρ-diametral.

By A(B) we denote the family of all admissible subsets of B. Note that if B
is ρ-bounded, then B ∈ A(B).

The classical proof of Kirk’s fixed point theorem relies heavily on a topo-
logical compactness assumption. Under our formulation, we may assume
a sequential compactness which is easy to check in many practical cases.
Therefore we may ask when our sequential compactness is generated from
a topological compactness,i.e. given a set which is sequentially compact (in
our sense), is there a topology which makes it compact? This problem to
our knowledge is still open. Consequently, we will use a “constructif proof”
developped by Kirk instead of the classical proof based on Zorn and the com-
pactness assumption. It is worth to mention that Kirk’s fixed point theorem
in modular spaces is the first example where the constructif proof was used.
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The main ingredient in the constructif proof is the following technical result.

Lemma 1. Let B be a nonempty, ρ-bounded subset of Lρ. Let T : B → B
be a ρ-nonexpansive mapping. Assume that B has ρ-normal structure. If
D ∈ A(B) is T -invariant, i.e. T (D) ⊂ D, then there exists D? ∈ A(B) a
nonempty subset of D, which is T -invariant, and such that

δρ(D
?) ≤ 1

2

(
δρ(D) + Rρ(D)

)
.

We are now ready to state the analog of Kirk’s fixed point theorem in
modular function spaces.

Theorem 4. Let ρ have the Fatou property and B be a nonempty, ρ-bounded
subset of Lρ. Assume that B has ρ-normal structure and is (ρ-a.e.)-compact.
If T : B → B is ρ-nonexpansive, then it has a fixed point.

The analog of Kirk’s fixed point theorem for commutative families is also
true in modular spaces.

Theorem 5. Let ρ have the Fatou property and µ be a positive σ-finite mea-
sure which is absolutely continuous with respect to ρ. Let B be a nonempty,
ρ-bounded subset of Lρ which is compact in the sense of convergence in mea-
sure on sets of finite measure. Assume that B has ρ-normal structure. Then
any commutative family of ρ-nonexpansive self-mappings of B has a common
fixed point.

Recall that a positive σ-finite measure µ on Σ is said to be absolutely
continuous with respect to the function modular ρ if µ(A) = 0 for any ρ-null
set A (recall that A is ρ-null if ρ(α1A) = 0 for all α > 0).

We will not comment on the last two theorems since many authors have
written extensively on them. Let us only mention that one of the reasons
why they were at the center of the metric fixed point theory is du to the rich
structure of normal structure property in Banach spaces. Therefore, it is nor-
mal to investigate ρ-normal structure in modular spaces. Traditionally, the
first results in this direction connect normal structure to geometrical proper-
ties like uniform convexity. Generalizations of these notions to metric spaces
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have been known for a while but no concrete example was known until the
hyperbolic metric on the Hilbert ball was proven to be uniformly convex. In
what follows we give the definition of uniform convexity of function modulars.

Definition 14.

(a) For nonzero f ∈ Lρ and r > 0, we define the r-modulus of uniform
convexity of ρ in the direction of f to be:

δρ(r, f) = inf

{
1− 1

r
ρ
(
g +

1

2
f
)}

,

where the infinimum is taken over all g ∈ Lρ such that ρ(g) ≤ r and
ρ(g + f) ≤ r.

(b) We say that a convex function modular ρ is uniformly convex in every
direction (UCED) if δρ(r, f) > 0 for every nonzero f ∈ Lρ and r > 0.

(c) We say that a convex function modular ρ is uniformly convex (UC) if
for every ε > 0 and r > 0, we have

δρ(r, ε) = inf

{
δρ(r, f) : f ∈ Lρ and ρ(f) ≥ rε

}
> 0 .

Note that the definition of uniform convexity for function modulars given
by Musielak is the exact translation of the known one in normed linear spaces.
Such a concept does not seem to be an appropriate tool for dealing with
modulars without the ∆2-condition, which is of particular interest to us (see
example below).

Remark. Let us observe that δρ(r, ε) is an increasing function of ε for every
fixed r. Moreover, for r1 < r2, there holds

1− r2

r1

(
1− δρ

(
r2, ε

r1

r2

))
≤ δρ(r1, ε) .

Let us also mention that, since ρ does not have to be homogenuous, δρ(r, f)
depends on r not only the direction f .
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The classical link between these notions and ρ-normal structure is given
in the following result.

Proposition 2. Let ρ be a UCED function modular, and let B ⊂ Lρ be star-
shaped, ρ-bounded and not reduced to one point. Then B has a point which
is not ρ-diametral.

Nontrivial examples of function modulars which are uniformly convex are
to be found in Orlicz spaces. Therefore, we will restrict ourselves till the
end of this section to Orlicz modulars. We will assume that µ is finite and
atomless. However, by simple modification of proofs all our results can be
obtained in the σ-finite case.

Definition 15.

(a) An Orlicz-function ϕ is said to be strictly convex (SC) if and only if
for every x 6= y there holds

ϕ
(

x + y

2

)
<

ϕ(x) + ϕ(y)

2
.

(b) An Orlicz-modular ρ is said to be strictly convex (SC) if and only if for
every f, g ∈ Lρ such that ρ(f) = ρ(g) and

ρ

(
f + g

2

)
=

ρ(f) + ρ(g)

2

there holds f = g.

(c) An Orlicz-function ϕ is said to be uniformly convex (UC) if and only
if for every a ∈ (0, 1), there exists δ(a) ∈ (0, 1) such that

ϕ

(
1 + b

2

)
<
(
1− δ(a)

)ϕ(x) + ϕ(bx)

2

for every x > 0 and 0 ≤ b ≤ a.

Note that Kaminska proved that for the norm ||.||ρ the following assertions
are equivalent:(a) ||.||ρ is UCED, (b) ||.||ρ is SC, (c) ϕ is SC and ϕ satsifies
∆2. A similar result for uniform convexity was also proved by Kaminska.
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Our next results give their modular version. Note, however, that when re-
placing ||.||ρ by ρ, we were able to eliminate the ∆2-condition.

Theorem 6. The following three conditions are equivalent:

(i) ϕ is SC;

(ii) ρ is SC;

(iii) ρ is UCED.

Definition 16. A function ϕ is called very convex (VC) if and only if for
every ε > 0 and any x0 > 0, there exists δ > 0 such that

ϕ
(

1

2
(x− y)

)
≥ ε

2

(
ϕ(x) + ϕ(y)

)
≥ εϕ(x0)

implies

ϕ
(

1

2
(x + y)

)
≤ 1

2
(1− δ)

(
ϕ(x) + ϕ(y)

)
.

It is easy to see that ϕ is VC if ϕ is UC. The characterization of uniformly
convex Orlicz modulars is given in the following theorem.

Theorem 7. The following conditions are equivalent:

(i) ϕ is VC;

(ii) ρ is UC.

The proof is based on the following technical result.

Lemma 2. Let ϕ be very convex. To every ε > 0, s > 0 there exists η > 0
(which depends only on ε and s) such that δρ(r, ε) > η for r > s/3.

The functions ϕ1(t) = e|t|−|t|−1 and ϕ2(t) = et2−1 may serve as examples
of very convex Orlicz-functions which do not satisfy ∆2-condition. Neverthe-
less, by the previuous theorems, we can obtain information about the asso-
ciate function modular and about existence of fixed points of ρ-nonexpansive
mappings. The associated Luxemburg-norm fails to be nice in this case du
to Kaminska ’s results. Therefore we cannot use the classical theorems even
when the mappings are norm-nonexpansive. Let us add before we end this
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section, that Lami-Dozo and Turpin obtained a similar fixed point theorem
for ρ-nonexpansive mappings for Musielak-Orlicz spaces. Instead of strict
convexity of ϕ they assumed some growth condition and B was assumed to
satisfy a stronger kind of ρ-boundedness (sup{ρ(λ(f − g)); f, g ∈ B} < ∞
for some λ > 1).

The last result of this section is an analog of Garkavi’s characterization
of UCED in normed linear spaces.

Theorem 8. The following conditions are euivalent:

(i) ρ is UCED;

(ii) For every nonempty subset B of Lρ, ρ-bounded, ρ-closed and convex,
we have Cρ(B) has at most one point.

5 Uniform noncompact convexity in Modular

spaces.

Goebel and Sekowski used the concept of measure of noncompactness to give
a new classification of Banach spaces. In this work, we discuss their result
in modular spaces.

Definition 17. Let Xρ be a modular space. Define the Hausdorff measure
of noncompactness by

χ(A) = inf{ε > 0; A can be covered with a finite number of ρ-balls of radius less than ε},

and the Kuratowski measure of noncompactness by

α(A) = inf{ε > 0; A can be covered with a finite number of sets of ρ-diameter less than ε},

for any subset A of Xρ. We will make the obvious convention that the inf
over empty set is infinite.

One can easily notice that χ(A) ≤ α(A) for every A ⊂ Xρ.
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Throughout this work, we will assume that Xρ is ρ-complete and ρ satis-
fies the Fatou property.

Proposition 3. The following properties hold,

(1) if A ⊂ B, then χ(A) ≤ χ(B) and α(A) ≤ α(B),

(2) χ(Ā) = χ(A) and α(Ā) = α(A),

(3) if α(A) = 0, then Ā is ρ-compact,

(4) let (An) be a decreasing sequence of nonempty ρ-closed subset of Xρ.
Assume that limn α(An) = 0 (resp. limn χ(An) = 0) then ∩An is a
nonempty ρ-compact set (resp. ∩An is nonempty and χ(∩An) = 0).

Since ρ lakes a priori the subadditivity, there is no reason to have α(A) = 0
whenever A is ρ-compact. Let us add that it can be shown that ρ satisfies
the ∆2-condition if and only if α(A) = 0 whenever A is ρ-compact.

As Goebel and Sekowski did in Banach spaces, we give a new scaling for
modular spaces using the measures of noncompactness α and χ.

Definition 18. The ρ-modulus of noncompact convexity ∆χ (resp. ∆α) is
defined as

(∗∗) ∆χ(r, ε) = sup{c > 0; for any A ⊂ Xρ ρ−bounded convex such that A ⊂ Bρ(f, r)

with χ(A) ≥ rε, then distρ(f, A) ≤ r(1− c)},

for every r > 0 and ε > 0.
For the definition of ∆α, one will replace χ(A) by α(A) in (∗∗).
Define the characteristic of noncompact convexity by

εχ(r, Xρ) (resp. εα(r, Xρ)) = sup{ε > 0; ∆χ(r, ε) (resp.∆α(r, ε)) = 0 }

for every r > 0.

Since we have χ ≤ α, one can get ∆χ ≤ ∆α and εα ≤ εχ. In any Banach
space X, one can easily prove that εχ(X) = 0 if and only if εα(X) = 0. In
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modular spaces, it is not the case in general.

Definition 19. The modular space Xρ is said to be α (resp. χ)-uniformly
ρ-noncompact convex if and only if εα(r, Xρ) = 0 (resp. εχ(r, Xρ) = 0), for
every r > 0.

Clearly if Xρ is χ-uniformly ρ-noncompact convex, then Xρ is α-uniformly
ρ-noncompact convex.

Example. It is not hard to show that

δρ(r, ζε)) ≤ ∆α(r, ε),

for every r > 0, ε > 0 and ζ < 1, where δρ is the ρ-modulus of uni-
form convexity. Clearly, we have ρ-uniform convexity implies α-uniform ρ-
noncompact convexity.

Goebel and Sekowski proved that whenever the characteristic of uniform
noncompact convexity of any Banach space is less than 1, then the space is
reflexive and has the normal structure property. In what follows, we inves-
tigate the validity of these results in modular spaces. Let us point out that
their proofs are entirely based on the rich structure of the Banach spaces,
specially the existence of the dual space.
The first result discuss the link between proximinality and the ρ-modulus of
noncompact convexity. More exactly, given a function f ∈ Xρ, we consider
the minimization problem of finding h ∈ C such that

ρ(f − h) = inf{ρ(f − g); g ∈ C},

for a given C ⊂ Xρ. Such a h is called a best approximant. Problems of
finding best approximants are important in approximation theory and prob-
ability theory.

Theorem 9. Let Xρ be a ρ-complete modular space. Assume that ρ is convex,
satisfy the Fatou property and Xρ is α-uniformly ρ-noncompact convex. Then
for any nonempty C ρ-bounded ρ-closed convex subset of Xρ and f ∈ Xρ such
that distρ(f, C) < ∞, the set

Pρ(f, C) = {g ∈ C; distρ(f, C) = ρ(f − g) }
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is a nonempty ρ-compact convex subset.

Remark. We are unable to prove whether the conclusion of Theorem 9 is
true if we juste assume that εα(Xρ) < 1.

Theorem 10. Let Xρ be a ρ-complete modular space. Assume that ρ is con-
vex, satisfy the Fatou property and Xρ is α-uniformly ρ-noncompact convex.
Then Xρ has the Property (R).

The definition of property (R) is given in Definition 6.

Remark. One can ask if
⋂
β∈Γ

Aβ is nonempty under the assumptions of The-

orem 10, for any decreasing family (Aβ)β∈Γ of ρ-bounded, ρ-closed nonempty
convex subsets of Xρ and any directed set Γ. The answer to this problem is
in the affirmative. Consequently, the proof of Kirk’s fixed point theorem in
the modular sense will use the classical ideas instead of the contructive ones.

The next result discuss the ρ-normal structure in uniformly ρ-noncompact
convex modular spaces.

Theorem 11. Let Xρ be a ρ-complete modular space. Assume that ρ is con-
vex, satifies the Fatou property and εα(Xρ) < 1. Then Xρ has the ρ-normal
structure provided that Xρ has the property (R′).

6 Opial and Kadec-Klee properties in modu-

lar spaces

In this section, we discuss some recent results (see Besbes and Lennard) on
uniform Kadec-Klee and uniform Opial properties in L1 . It is not very hard
to see that these results are of measure theoretical nature. It is worth to
mention that the original ideas are to be found in Brezis and Lieb’s work as
was noticed by Lami-Dozo and Turpin.
After close investigation, it was clear to us that these results are not of metric
nature and can be translated into modular sense. Note that in L1, the norm
and the modular coincide.
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Throughout this section, ρ is assumed to be convex. Before we give the
main result, we need the analog of Brezis and Lieb’s result for function mod-
ulars.

Lemma 3. Let ε > 0 and k > 1 be such that k ε < 1. Set Cε = 1/ε (k − 1).
Then for every f, g ∈ Lρ such that ρ(kf) < ∞ and ρ(Cεg) < ∞, we have

|ρ(f + g)− ρ(f)| ≤ ε |ρ(kf)− kρ(f)|+ 2 ρ(Cε g).

From now on we will assume that ρ is additive, i.e.

ρ(f, A ∪B) = ρ(f, A) + ρ(f, B),

whenever A, B ∈ Σ such that A ∩ B = ∅. Clearly this implies ρ(f, A) =
ρ(f 1A).
The next result states the main result of this work.

Theorem 12. Let {fn} ∈ Lρ be ρ-a.e. convergent to 0. Assume there exists
k > 1 such that

sup
n

ρ(kfn) = M < ∞.

Let g ∈ Eρ, then we have

lim inf
n→∞

ρ(fn + g) = lim inf
n→∞

ρ(fn) + ρ(g).

As a corllary to this theorem one can get the following.

Corollary 1. Let p ≥ 1 and {fn} be a sequence of Lp-uniformly bounded
functions on a measure space. Assume that {fn} converges almost everywhere
to f ∈ Lp. Then

lim inf
n→∞

||fn||p = lim inf
n→∞

||fn − f ||p + ||f ||p.

When p = 1, the conclusion of Corollary 1 gives the main result of Besbes

and Lennard. Let us add that when p < 1 the conclusion of Corollary 1 is
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still true. This will not be a simple deduction from Theorem 12 since the
function ϕ(t) = tp is not convex. A technical assumption can be added to
get a more general result.

Theorem 13. Let ε > 0 and {fn} ∈ Lρ be ρ-a.e. convergent to 0. Assume
there exists k > 1 such that

sup
n

ρ(kfn) = M < ∞.

Let f ∈ Eρ such that ρ(f) ≥ ε, then we have

lim inf
n→∞

ρ(fn) + ε ≥ lim inf
n→∞

ρ(fn + f).

The proof is obvious using the conclusion of Theorem 12. This is a kind of

Opial property. First let us give the following definition.

Definition 20. We will say that Lρ satisfies the ρ-a.e.-Opial property if for
every {fn} ∈ Lρ ρ-a.e. convergent to 0 such that there exists k > 1 for which

sup
n

ρ(kfn) = M < ∞

then for every f ∈ Eρ not equal to 0 we have

lim inf
n→∞

ρ(fn) < lim inf
n→∞

ρ(fn + f).

We will say that Lρ satisfies the ρ-a.e.-uniform Opial property if for every
ε > 0 there exists η > 0 such that for every {fn} ∈ Lρ ρ-a.e. convergent to
0 such that there exists k > 1 for which

sup
n

ρ(kfn) = M < ∞

then for every f ∈ Eρ such that ρ(f) ≥ ε we have

lim inf
n→∞

ρ(fn) + η ≤ lim inf
n→∞

ρ(fn + f).

Opial’s property plays an important role in the study of convergence of it-
erates of nonexpansive mappings and of the asymptotic behavior of nonlinear
semigroups. Clearly the ρ-a.e.-uniform Opial property implies ρ-a.e.-Opial
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property. Therefore the conclusion of Theorem 13 means that Lρ satisfies
the ρ-a.e.-uniform Opial property.

Definition 21. We will say that Lρ satisfies ρ-a.e.-Kadec-Klee property if for
some ε > 0 and every r > 0 there exists η > 0 such that for every {fn} ∈ Eρ

ρ-a.e. convergent to f ∈ Eρ such that there exists k > 1 for which

sup
n

ρ(k [fn − f ]) = M < ∞

and ρ(fn) ≤ r for every n ≥ 1, we have

ρ(f) ≤ r(1− η)

provided

sep
{

1

2
fn

}
= inf

{
ρ

(
fn − fm

2

)
; n 6= m

}
> r ε.

We will say that Lρ satisfies ρ-a.e.-uniform Kadec-Klee property if the above
still holds for every ε.

Theorem 14. Under the assymptions of Theorem 12, the modular function
space Lρ satisfies ρ-a.e.-uniform Kadec-Klee property.

If the modular ρ is subadditive then one does not need to take ρ((fn −
fm)/2) in Definition 22 we could take ρ(fn − fm). This is the case when
Lρ = L1.

7 Semigroups in Musielak-Orlicz spaces.

In this section, we consider the classical Musielak-Orlicz spaces Lϕ, in which
we investigate the existence and the behavior of nonlinear semigroups. We
obtain an existence result of semigroups generated by the mapping A = I−T ,
where T is ρ-nonexpansive acting within Lϕ. Note that ρ does not have to
satisfy the ∆2-condition.
Let us also add that the classical approch consists of solving an initial value
problem. When ρ satisfies the ∆2-condition, our existence result seems to be
unknown.
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Definition 22. Let C be a subset of Lϕ. A mapping S : [0,∞) × C → C
is said to be a (ρ-nonexpansive)-semigroup if the following conditions are
satisfied

(i) S(0)f = f for all f ∈ C,

(ii) S(t1 + t2) = S(t1)S(t2) for all t1, t2 ≥ 0,

( (iii) the mapping f → S(t)f is ρ-nonexpansive for all t ≥ 0 ).

In order to obtain an existence result concerning the semigroups in Musielak-
Orlicz spaces, the following technical theorem is needed.

Theorem 15. Let C be a ρ-closed, ρ-bounded convex subset of Lϕ. Let T :
C → C be ρ-nonexpansive and norm-continuous. Let f ∈ C be fixed and
consider the recurrent sequence defined by{

u0(t) = f
un+1(t) = exp(−t)f +

∫ t
0 exp(s− t)T (un(s))ds

for t ∈ [0, A], where A is a fixed positive number. Then the sequence {un(t)}
is ρ-Cauchy for any t ∈ [0, A]. Therefore it converges with respect to ρ, to
u(t) ∈ C for any t ∈ [0, A].

The proof of Theorem 15 is based on the following technical lemma.

Lemma 4. Let x, y : [0, t] → Lϕ be norm-continuous mappings. Then, we
have

ρ
(

exp(−t)y(t)+
∫ t

0
exp(s−t)x(s)ds

)
≤ exp(−t)ρ(y(t))+K(t) sup

{
ρ(x(s)); s ∈ [0, t]

}
where K(t) = 1− exp(−t) =

∫ t
0 exp(s− t)ds.

It is not clear if the assumptions on C and T are enough to imply any
good behavior of u(t) on [0, A] such as norm-continuity for example. But if
ρ satisfies the ∆2-condition then u(t) is indeed continuous.

Theorem 16. Under the assumptions of Theorem 2.1., if moreover ρ sat-
isfies the ∆2-condition, then u(t) is solution of the following initial value
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problem, {
u′(t) + (I − T )u(t) = 0
u(0) = f.

Remark. Notice that when ρ satisfies the ∆2-condition there is no reason
for T to be norm-nonexpansive. So the classical theorems related to the ex-
istence of solutions to the initial value problem won’t apply.

Remark. Let L > A and consider the following system{
U0(t) = f
Un+1(t) = exp(−t)f +

∫ t
0 exp(s− t)TUn(s)ds

for t ∈ [0, L]. Then {Un(t)} is ρ-convergent to U(t) and U(t) = u(t) for
t ∈ [0, A]. This implies that there exists u(t) ∈ C for all t ∈ [0,∞), such
that the restriction of u to [0, A] is the ρ-limit of the sequence {un(t)} given
in Theorem 15. We will use the notation uf to designate this function u
associated to the initial condition u(0) = f .

In the next result we discuss the existence of ρ-nonexpansive semigroups
in Lϕ.

Theorem 17. Let C and T be as stated in Theorem 15. For any f ∈ C
consider uf (t) ∈ C for t ∈ [0,∞). Define S : [0,∞)× C → C by

S(t)f = uf (t).

Then S defines a ρ-nonexpansive semigroup.

We conclude this section by a result which links the set of fixed points of
the semigroup S and the set of fixed points of T .

Proposition 4. Define the set F (S) to be the set of f ∈ C such that S(t)f =
f for all t ≥ 0. Then we have

F (S) = F (T ).
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