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Abstract

In this work, we define signed disjunctive programs and investigate
the existence of answer sets for this class of programs. Our main ar-
gument is based on an analogue to Tarski-fixed point theorem which
we prove for multivalued mappings. This is an original approach com-
pared to known techniques used to prove the existence of answer sets
for disjunctive programs.

1 Introduction

In order to introduce a semantics in logic programing, one would in general
define an operator for which its fixpoints define the introduced semantics.
Therefore, it is important to know whether the given operator has a fixpoint.
One will always look for traditional fixpoint theorems and try to see whether
the given operator satisfies the assumptions that will insure the existence of
fixpoints. Since the beginning of the logic programming theory, the main
fixpoint result used is the classical Tarski Theorem. The main assumption
in this theorem is monotonicity. Therefore the use of this theorem was ex-
tensive in the monotone theory (positive programs). The introduction of the
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classical negation showed the limitation in the use of Tarski Theorem. There-
fore one of the main problems in this direction, is to come up with general
fixpoint results to substitute Tarski’s theorem. This is the reason why many
were trying to prove the existence of the fixpoint of the associated operator
directly in reference to a general theorem. Recently other directions were
developed: topological, metric [2,5]. It is very exiting to see that the metric
approach was very successful. The power behind metric’s theorems is the
overcome of the monotonicity making the use of classical negation a natural
one.

Since the beginning, our research was focused on the study of disjunctive
programs. Recall that the operator defining the given semantics is multi-
valued, i.e. for every x, T (x) is a set which may contains more than one
element. To the best of our knowledge, the fixpoint theory is mainly single
valued oriented. For example, we do not know of any multivalued fixpoint
theorem similar to the classical Tarski theorem. Therefore our approach was
to investigate a multivalued extension of Tarski theorem.

In this paper, we give a result that can be seen as a multivalued Tarski
theorem. Then we introduce the class of disjunctive signed programs and
show how the use of our theorem makes it possible to discuss the existence
of the fixpoint of Gelfond-Lifschitz operator(stable semantics). Recall that
the notion of a signed logic program was introduced by Gelfond and Lifschitz
[4] after a different formulation given initially by Kunen [6]. Indeed Kunen
defined the notion of signing on the predicate dependency graph of a finite
first-order program in order to prove that two-valued and three-valued com-
pletion semantics coincide on the class of strict normal programs. Gelfond
and Lifschitz extended this notion to logic programs in order to prove the
soundness translation from a high-level language (used for reasoning about
actions) to nondisjunctive logic programs. Turner [9] studied signed programs
after generalizing the original definition to programs with classical negation.
Many positive results were discovered about signed programs among them
the restricted monotonicity. Another beautiful application of signed pro-
grams was discovered by Turner and Lifschitz [7] for order-consistent normal
programs. Recall that a program is called order-consistent if the natural
order defined on the predicate dependency graph is well-founded (for more
on this see [1]). Fages [1] was the first to prove that such programs have
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an answer set. His proof is very complicated. Using the notion of splitting,
Turner and Lifschitz were able to prove that order-consistent programs are
exactly the programs that split into signed subprograms. This result made
it possible to give an easy proof to Fages result. The next step was to gen-
eralize the notion of signing to disjunctive programs. Turner was the first to
give a generalization. The fact that he assumes that one of the subprograms
generated by the signing is nondisjunctive is restrictive. In this work we give
a generalization of what would be a disjunctive signed program. The signed
disjunctive programs according to Turner are called signed semi-disjunctive
programs in this paper.

In this work, we prove the existence of consistent answer set for safe
signed semi-disjunctive programs via our multivalued Tarski theorem. This
result generalizes Turner’s one for head consistent programs. An example
is given of a safe signed semi-disjunctive program with no head consistent
cover. It is our belief that the application of our multivalued Tarski theorem
goes beyond the class of signed disjunctive programs. We hope that this
theorem will have an impact in disjunctive theory similar to the one the
classical Tarski theorem had in the nondisjunctive case.

2 Preliminaries

Let Lit be the set of ground literals in a first-order language L. A rule r is
an expression of the following form:

l1 | · · · | ln ← ln+1, · · · , lm, not lm+1, · · · , not lk

where li ∈ Lit. Set

Head(r) = {l1, · · · , ln} , Pos(r) = {ln+1, · · · , lm}

and
Neg(r) = {lm+1, · · · , lk}

The rule r is said to be disjunctive if n ≥ 2, i.e. Head(r) has more than one
element and nondisjunctive if n = 1. An extended (disjunctinve) program Π
is a set of (disjunctive) rules.
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To define the answer set semantics of extented programs, let us first consider
programs without negation by failure not.

Let Π be a program (disjunctive or not) for which Neg(r) is empty for ev-
ery r ∈ Π. A subset X of Lit, i.e X ∈ 2Lit, is said to be closed by rules in
Π if for every r ∈ Π such that Pos(r) ⊂ X, we have Head(r)∩X is not empty.

The set X ∈ 2Lit is an answer set of Π whenever X is closed by rules and

1. if X contains complementary literals, then X = Lit.

2. X is minimal, i.e. if A ⊂ X and A is closed by rules in Π then A = X.

The set of answer sets of Π is denoted by α(Π). If Π is not disjunctive, then
α(Π) is a singleton, i.e. Π has one answer set and if it is disjunctive then
α(Π) may contain more than one element.

Now let Π be a disjunctive program that may contain not . For X ∈ 2Lit,
consider the program ΠX defined by

1. If r ∈ Π such that Neg(r)∩X is not empty, then remove r, i.e. r 6∈ ΠX

2. If r ∈ Π such that Neg(r) ∩ X is empty then the rule r′, defined by
Head(r′) = Head(r), Pos(r′) = Pos(r) and Neg(r′) = ∅, belongs to
ΠX .

Clearly the program ΠX does not contain not and α(ΠX) is therefore defined.
Gelfond and Lifschitz [3] introduced the operator GL : 2Lit → 2Lit defined
by GL(X) = α(ΠX). The set X ∈ 2Lit is said to be an answer set of Π if
X ∈ α(ΠX), i. e. X ∈ GL(X). If Π is nondisjunctive then X is an answer
of Π if and only if X = GL(X). In both cases, we talk about fixed point of
GL.

We will say that X ∈ 2Lit is consistent if it does not contain complementary
literals. The program Π is said to be consistent if there exists a consistent
answer set.
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A special case of consistent programs are head consistent programs. Recall
that the head of the program Π is the set

Head(Π) = {l; there exists a rule r ∈ Π such that l ∈ Head(r) } =
⋃
r∈Π

Head(r)

Π is said to be head consistent if Head(Π) is consistent. Another class of
consistent programs is given by what we call safe programs. Before we give
the definition of such programs, we need the following definition.

Definition. Let Π be a disjunctive program and X ∈ 2Lit. We will say that
X activates a rule r ∈ Π if and only if Neg(r) ∩X = ∅ and

Pos(r) ⊂ X =⇒ Head(r) ∩X 6= ∅ .

The pair (Π1, Π2) defines a partition for the program Π if Π1 and Π2 are two
disjoint subprograms of Π such that Π = Π1 ∪ Π2.

Definition. A disjunctive program Π is said to be safe with respect to a
partition (Π1, Π2) if for every Y ∈ 2Lit and X ∈ α(ΠY

1 ), X does not activate
two contrary rules.

Recall that two rules r1 and r2 are said to be contrary if there exists a literal
l ∈ Lit such that l ∈ Head(r1) and ¬l ∈ Head(r2).

An example of a safe program (which is not head-consistent) is the program
formalizing the classical flying birds story:

Exemple. Suppose that we are told that penguins are birds that do not
fly, that birds normally fly, and that Tweety is a bird and not a penguin
and Sam is a penguin. Let us also assume that this information is complete.
Therefore, we can represent knowledge from the exemple by the logic program
Π consisting of the rules:

1. f(X) ← b(X), not ab(f, b, X)

2. b(X) ← p(X)

3. ab(f, b, X) ← p(X)
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4. ¬f(X) ← p(X)

5. ¬f(X) ← ¬b(X)

6. b(t) ←

7. p(s) ←

8. ¬p(t) ←

Note that t (for Tweety) and s (for Sam) are the only constants allowed by
the program. Consider the two subprograms:

Π1

{
ab(f, b, X) ← p(X)
p(s) ←

Π2



f(X) ← b(X), not ab(f, b, X)
b(X) ← p(X)
¬f(X) ← p(X)
¬f(X) ← ¬b(X)
b(t) ←
¬p(t) ←

It is clear that (Π1, Π2) forms a partition for Π for which it is safe.

The following two basic properties of answer sets are fundamental for this
work.

Proposition 1. Let Π be a disjunctive program.

1. Let X ∈ 2Lit and A ∈ α(ΠX). Then for every l ∈ A, there exists a rule
r ∈ Π such that

Pos(r) ⊂ A , Neg(r) ∩ A = ∅ and Head(r) ∩ A = {l} .

2. If X ⊂ Y , X, Y ∈ 2Lit, then

∀A ∈ α(ΠX) ∃B ∈ α(ΠY ) B ⊂ A
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The proof of 1 is based on the minimality of A. For 2, it is not hard to see
that A is closed by the rules of ΠY , therefore it contains an answer set of ΠY .
When the program Π is nondisjunctive, we have

X ⊂ Y =⇒ α(ΠY ) ⊂ α(ΠX)

in another word the operator GL is anti-monotone.

3 A multivalued Tarski theorem

The main ingredient used to prove the existence of fixpoints of operators
in nondisjunctive logic programming is the Tarski theorem. It is worth to
mention that these operators are single valued. When one tries to copy these
techniques in the disjunctive case we are facing the situation of how to prove
the existence of fixpoints of multivalued operators. The first approach is to
look for a classical theorem that holds and try to use it. It is unfortunate
that, to the best of our knowledge, no formulation of Tarski theorem is known
in the multivalued case.

Let (L,≤) be a complete lattice. Define the relation ≺r (r for restriction) in
2L by

A ≺r B ⇐⇒ ∀y ∈ B ∃x ∈ A x ≤ y

it is clear that ≺r is a preorder but not an order (≺r is not antisymetric).
The preorder ≺r was naturally considered in view of proposition 1.
In a similar fashion, we also define the extension preorder ≺e in 2L by

A ≺e B ⇐⇒ ∀x ∈ A ∃y ∈ B x ≤ y .

Although ≺r and ≺e are not orders in general, when restricted to the set

M = {A ∈ 2L; A is an antichain}

they become an order. Recall that an antichain is an unordered set, i.e any
two elements are not comparable. A natural example of an antichain is given
by α(ΠX).
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We say that a multivalued mapping T from L into 2L is ≺r-increasing (in
logic programming language we will say T is monotone) if

x ≤ y =⇒ T (x) ≺r T (y)

and ≺r-decreasing (in logic programming language we will say T is antimono-
tone) if

x ≤ y =⇒ T (y) ≺r T (x)

Similar definitions can be given for ≺e-increasing and ≺e-decreasing.

Note that proposition 1 implies that the operator GL is ≺r-decreasing (anti-
monotone) but it is fairly easy to come up with an example which shows that
GL is not ≺e-decreasing.

Before we state the main result of this section, we need the following
definiton.

Definition. Let L be an ordered set and T a multivalued mapping from L
into 2L. We say that the family (xβ) is a decreasing T-orbit if{

xβ+1 ∈ T (xβ)
xβ+1 ≤ xβ .

The next result is a multivalued version of the classical Tarski theorem.

Theorem 1 (Tarski multivalued) Let L be a complete lattice and T be
an ≺r-increasing multivalued mapping from L into 2L such that for every
x ∈ L

1. T (x) is not empty (i.e. T (x) 6= ∅)

2. For every decreasing T-orbit (xβ), there exists x ∈ L such that x ∈
T (inf xβ) and x ≤ xβ for all β,

Then T has a fixed point, i.e. there exists x ∈ L such that x ∈ T (x).
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Proof. Let x0 be the greatest element of L (x0 = 1). Since T (x0) is not
empty, choose x1 ∈ T (x0). We have x1 ≤ x0. Since T is ≺r-increasing, then
T (x1) ≺r T (x0). Therefore there exists x2 ∈ T (x1) such that x2 ≤ x1, and
so on...Therefore we can construct a sequence (xn) such that{

xn+1 ∈ T (xn)
xn+1 ≤ xn

If there exists n such that xn+1 = xn, the process stops and we reach the
fixed point. Otherwise let xω = inf(xn), since (xn) is a decreasing T-orbit
there exists xω+1 ∈ L such that{

xω+1 ∈ T (xω)
xω+1 ≤ xω.

Therefore by a transfinite induction we can construct a familly (xα), where
α is an ordinal, such that {

xα+1 ∈ T (xα)
xα+1 ≤ xα.

Since (xα) is decreasing, it can not be strictly decreasing (by ZF). In an other
word, we can not have xα 6= xβ for every α 6= β. Therefore there exists α0

such that xα0+1 = xα0 , that is xα0 ∈ T (xα0). The proof of Theorem 1 is
therefore complete.

Remark. The second hypothesis is a technical one needed in the proof. Note
that if T (x) is finite for every x ∈ L, then it is obviously satisfied.

4 Signed disjunctive programs

Signed programs were introduced and used to prove the existence of answer
sets for nondisjunctive programs. Turner was the first to attempt a general
definition for signing in the disjunctive case. We think that his definition
does not carry the general case. In the following we present a definition for
signed disjunctive program which we believe is more general.
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Definition. We will say that Π is signed if there exists S ∈ 2Lit, called a
signing, such that for every r ∈ Π we have

1. if Neg(r) ∩ S is empty, then Head(r) ⊂ S and Pos(r) ⊂ S. Let Πs be
the program generated by these rules.

2. If Neg(r)∩S is not empty, then Head(r)∩S = ∅, Pos(r)∩S = ∅ and
Neg(r) ⊂ S. Let Πs̄ be the program obtained from these rules, where
S̄ denotes the complement of S, i.e. S̄ = Lit− S.

Clearly the two subprograms Πs and Πs̄ are disjoint and Π = Πs ∪ Πs̄.

For nondisjunctive signed programs with positive head, Gelfond and Lifs-
chitz [4] proved the existence of a consistent answer set. It is still unknown
if disjunctive signed programs have answer sets. For a more restrictive class
of programs called semi-disjunctive, we have a positive answer.

Definition. A signed program Π is said to be semi-disjunctive if there
exists a signing S such that Πs is nondisjunctive.

Note that what Turner defines as signed disjunctive programs is what we
call semi-disjunctive. One of the reason why Turner was interested into such
programs is to prove the existence of answer sets for the two guns domain
example which is a variant of the Yale Shooting domain:

Example: Two guns domain. The story is about a pilgrim and a turkey.
The pilgrim has two guns. Initially, the turkey is alive, but if the pilgrim
fires a loaded gun, the turkey dies. Furthermore, at least one of the two guns
is loaded initially. This clearly implies that the turkey will be dead if the
pilgrim performs any of the following sequences of actions :

1. wait, shoot gun one, shoot gun two

2. wait, shoot gun two, shoot gun one.

The following program Π formalizes the two-gun domain.

1. Holds(Alive, S0) ←
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2. Holds(Loaded1, S0) | Holds(Loaded1, S0) ←

3. ¬Holds(Alive, Result(Shoot1, s)) ← Holds(Loaded1, s)

4. Noinertial(Alive, Shoot1, s) ← not¬Holds(Loaded1, s)

5. ¬Holds(Alive, Result(Shoot2, s)) ← Holds(Loaded2, s)

6. Noinertial(Alive, Shoot2, s) ← not¬Holds(Loaded2, s)

7. Holds(f, Result(a, s)) ← Holds(f, s), notNoinertial(f, a, s)

8. ¬Holds(f, Result(a, s) ← ¬Holds(f, s), notNoinertial(f, a, s)

9. Holds(f, S0) | ¬Holds(f, S0) ←

This program is signed semi-disjunctive with S = {Noinertial(f, a, s)}
as a signing. It is not hard to generalize this program to more than two guns
and still have a signed semi-disjunctive program. This program is obviously
head consistent and therefore it is a safe program.

Turner [9] using the notion of covers of a disjunctive program proved that
signed disjunctive programs have a consistent answer set provided they have
at least one head-consistent cover.

In what follows we prove the existence of a consistent answer set for a larger
class of signed disjunctive programs. This proof is based on a new fixed
point theorem that can be seen as a multivalued Tarski theorem. It is, to our
knowledge, the first kind of result that may have a potential application in
the study of disjunctive programs as Tarski’s theorem did for nondisjunctive
programs.

Let Π be a signed disjunctive program with Πs and Πs̄ be the associated
subprograms where Πs is nondisjunctive. For any X ∈ 2Lit clearly we have
ΠX = ΠX

s ∪ ΠX
s̄ and ΠX

s = ΠX∩S̄
s and ΠX

s̄ = ΠX∩S
s̄ . Let L = 2S̄ and define

T : L→ 2L by

T (X) = α(Π
α(ΠX

s )
s̄ ) .
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Lemma 2: T is ≺r-monotone.

Obvious since the operator U(X) = α(ΠX) is anti-monotone.

Lemma 3: Let (Xβ) be a decreasing T-orbit in L and denote Z =
⋂
β

Xβ.Then

there exists Y ⊂ S̄ such that {
Y ∈ T (Z)
Y ⊂ Z.

Indeed let us note that Z is closed by rules in Π
α(ΠZ

s )
s̄ . Let r ∈ Π

α(ΠZ
s )

s̄ and
suppose that Pos(r) ⊂ Z. Since Z ⊂ Xβ, then

α(ΠXβ
s ) ⊂ α(ΠZ

s ) and Π
α(ΠZ

s )
s̄ ⊂ Π

α(Π
Xβ
s )

s̄ .

On the other hand, Pos(r) ⊂ Xβ+1 since Z ⊂ Xβ+1. But Xβ+1 ∈ α(Π
α(Π

Xβ
s )

s̄ )

and since r ∈ Π
α(Π

Xβ
s )

2 there exists Aiβ ∈ Head(r) such that Aiβ ∈ Xβ+1.
Therefore for every β there exists Aiβ ∈ Head(r) such that Aiβ ∈ Xβ+1. Since
Head(r) is finite and the familly (Xβ) is infinite, there exists A ∈ Head(r)
such that A ∈ Xβ for all β.

Therefore Z is closed by rules in Π
α(Π

X2
s )

s̄ . This clearly implies the existence

of Y ⊂ Z such that Y ∈ α
(
Π

α(ΠZ
s )

s̄

)
.

Theorem 2. Let Π be a signed safe semi-disjunctive program. Then Π has
a consistent answer set.

Proof: Because of Theorem 1 the operator T has a fixed point, i.e. there

exists X2 ∈ 2S̄ such that X2 ∈ T (X2) = α(Π
α(Π

X2
s )

s̄ ). Let X1 = α(ΠX2
s ). Let

us prove that X = X1 ∪ X2 is a consistent answer set of Π. Indeed, notice
that if l ∈ X1 ∪X2,then there exists a rule r ∈ Π activated by X1 such that
(X1 ∪X2)

⋂
head(r) = {l}.

Indeed if l ∈ X1 because of Proposition 1 there exists a rule r such that
pos(r) ⊂ X1 and head(r)∩X1 = {l}. But head(r) ⊂ S therefore head(r)

⋂
(X1∪

X2) = head(r) ∩X1. This clearly implies that X1 activates r. On the other
hand, if l ∈ X2, then there exists a rule r such that pos(r) ⊂ X2 and
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head(r) ∩ X2 = {l}. But head(r) ⊂ S̄ therefore head(r)
⋂

(X1 ∪ X2) =
head(r)∩X2. Since X2 = α(ΠX1

s̄ ), then Neg(r)∩X1 = ∅, otherwise the rule
r will be removed. Clearly X1 activates r. Let us now show that X1 ∪ X2

is consistent. Assume that there exists a literal l such that l and ¬l are in
X1∪X2. Therefore there exists two rules r1 and r2 activated by X1 such that

head(r1)
⋂

(X1 ∪X2) = {l} and head(r2)
⋂

(X1 ∪X2) = {¬l}

This clearly contradicts the fact that X1 can not activate two contrary rules.
Let us now prove that X1∪X2 is an answer set of Π. First at all, let us show
that X1 ∪X2 is closed by rules of ΠX1∪X2 .
Let r be a rule in ΠX1∪X2 such that pos(r) ⊂ X1 ∪X2. Since ΠX2

s and ΠX1
s̄

are disjoints and ΠX1∪X2 = ΠX2
s

⋃
ΠX1

s̄ , then r ∈ ΠX1
s̄ or r ∈ ΠX2

s .

(1) If r ∈ ΠX1
s̄ then pos(r) ⊂ S̄ i.e. pos(r) ⊂ X2, and since X2 ∈ α(ΠX1

s̄ )
then head(r) ∩X2 6= ∅.Therefore head(r)

⋂
(X1 ∪X2) 6= ∅.

(2) If r ∈ ΠX2
s we do the same thing.

Now let us prove that X1 ∪ X2 is minimal. Indeed, suppose that there
exists Y ⊂ X1 ∪ X2 closed by rules in ΠX1∪X2 = ΠX2

s

⋃
ΠX1

s̄ . Denote Y1 =
Y ∩ X1, then Y1 ⊂ X1 and it is easy to show that Y1 = α(ΠX2

s ); therefore
Y1 = X1. In the same way we have Y2 = Y ∩ X2 ∈ α(ΠX1

s̄ ), then Y2 = X2.
Therefore Y = Y1 ∪ Y2 = X1 ∪X2.

Remark. In fact the hypothesis that Π1 is a nondisjunctive program is not
necessary. Indeed, it is sufficient that only α(ΠX

1 ) is assumed to be a single-
ton for any X ∈ 2S̄ . An example of this is given by

Π


c | d ← not a
a | b ← not c

a ← not d
b ←

A signing for this program is S = {a, b}. Consider the operator T defined in
the proof of Theorem 2. Set Z0 = {c, d}. Then we have

T
(
{c, d}

)
=

{
{c}, {d}

}
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We have a choice for Z1.

1. If Z1 = {c}, then T (Z1) = {∅}. And since T
(
{∅}

)
= {∅}, we get

X2 = {∅}. Hence X1 = α(ΠX2
s ) = {a, b}. Therefore an answer set for

Π is X1 ∪X2 = {a, b}.

2. If Z1 = {d}, then T (Z1) =
{
{c}, {d}

}
. Therefore {d} is a fixpoint of

T which implies that X2 = {d}. Hence X1 = α(ΠX2
s ) = {b}. Therefore

an answer set for Π is X1 ∪X2 = {d, b}.

As one can see the iterations gave the two only answer sets of Π. Note that
whenever the program is finite, the associated iterations of T will stop after
a finite number of steps.
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