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Abstract

We discuss the existence of fixed points of asymptotic pointwise mappings in met-

ric spaces. This is the nonlinear version of some known results proved in Banach

spaces. We also discuss the case of multivalued mappings.
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1. Introduction

The notion of asymptotic pointwise mappings was introduced in [13, 14, 15].

The use of ultrapower technique was useful in proving some related fixed point

results. In a recent paper [15], the authors gave simple and elementary proofs for

the existence of fixed point theorems for asymptotic pointwise mappings without

the use of ultrapowers. In this paper, we extend most of their results to metric

spaces. In particular we consider the case of CAT(0) as an example of uniform

convex metric spaces. In this work, we show how weak-compactness in Banach

spaces is extended to metric spaces.

For more on metric fixed point theory, the reader may consult the book [12].

2. Basic Definitions and Results

First let us start by making some basic definitions.
1
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Definition 1. Let (M, d) be a metric space. A mapping T : M → M is called a

pointwise contraction if there exists a mapping α : M → [0, 1) such that

d(T (x), T (y)) ≤ α(x)d(x, y) for any y ∈ M.

It is clear that pointwise contractive behavior was introduced to extend the

contractive behavior in Banach contraction principle. The central fixed point

result for such mappings is the following theorem

Theorem 2.1. ([13, 14]). Let K be a weakly compact convex subset of a Banach

space and suppose T : K → K is a pointwise contraction. Then T has a unique

fixed point, x0. Moreover the orbit {T n(x)} converges to x0, for each x ∈ M .

Note that if T is a pointwise contraction, then it is continuous. Moreover if

α(x) = 0 for some x ∈ M , then T is a constant map. Since the main focus of

this paper is about the fixed point problem, it is easy to prove that a pointwise

contraction T : M → M has at most one fixed point, and if a is its fixed point,

then the orbit {T n(x)} converges to a, for each x ∈ M . Indeed, we have

d(a, T n(x)) ≤ α(a)nd(a, x)

for any x ∈ M . The above conclusion follows because α(a) < 1. It is not clear

how to prove the existence of the fixed point from the convergence of the orbits

which is the case in the classical proof given to the Banach contraction principle.

Definition 2. Let (M, d) be a metric space. A mapping T : M → M is called an

asymptotic pointwise mapping if there exists a sequence of mappings αn : M →
[0,∞) such that

d(T n(x), T n(y)) ≤ αn(x)d(x, y) for any y ∈ M.

(i) If {αn} converges pointwise to α : M → [0, 1), then T is called an asymp-

totic pointwise contraction.

(ii) If lim sup
n→∞

αn(x) ≤ 1, then T is called asymptotic pointwise nonexpansive.

(ii) If lim sup
n→∞

αn(x) ≤ k, with 0 < k < 1, then T is called strongly asymptotic

pointwise contraction.
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3. Pointwise Contractions in Metric Spaces

Let M be a metric space and F a family of subsets of M . Then we say that

F defines a convexity structure on M if it contains the closed balls and is stable

by intersection. For instance A(M), the class of the admissible subsets of M ,

defines a convexity structure on any metric space M . Recall that a subset of M

is admissible if it is a nonempty intersection of closed balls.

At this point we introduce some notation which will be used throughout the

remainder of this work. For a subset A of a metric space M, set:

rx(A) = sup{d(x, y) : y ∈ A}, x ∈ M ;
R(A) = inf{rx(A) : x ∈ A};
diam(A) = sup{d(x, y) : x, y ∈ A};
CA(A) = {x ∈ A : rx(A) = R(A)};
cov(A) =

⋂{B : B is a ball and B ⊇ A}.

diam(A) is called the diameter of A, R(A) is called the Chebyshev radius of A,

CA(A) is called the Chebyshev center of A, and cov(A) is called the cover of A.

Definition 3. Let F be a convexity structure on M .

(i) We will say that F is compact if any family (Aα)α∈Γ of elements of F ,

has a nonempty intersection provided
⋂
α∈F

Aα 6= ∅ for any finite subset

F ⊂ Γ.

(ii) We will say that F is normal if for any A ∈ F , not reduced to one point,

we have R(A) < diam(A).

(iii) We will say that F is uniformly normal if there exists c ∈ (0, 1) such that

for any A ∈ F , not reduced to one point, we have R(A) ≤ c diam(A). It

is easy to check that c ≥ 1/2.

Example 1. A metric space M is said to be hyperconvex [1] if given any family

{xα} of points of M and any family {rα} of nonnegative real numbers satisfying

d(xα, xβ) ≤ rα + rβ
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it is the case that ∩αB(xα; rα) 6= ∅. It is well known [2, 7] that if M is hyperconvex,

then A(M) is compact and uniformly normal with

R(A) =
1

2
diam(A)

for any A ∈ A(M).

The main result of [13, 14] may be stated in metric spaces as follows

Theorem 3.1. Let M be a bounded metric space. Assume that the convexity

structure A(M) is compact. Let T : M → M be a pointwise contraction. Then

T has a unique fixed point, x0. Moreover the orbit {T n(x)} converges to x0, for

each x ∈ M .

Proof. Since A(M) is compact, there exists a minimal nonempty K ∈ A(M) such

that T (K) ⊂ K. It is easy to check that cov(T (K)) = K. Let a ∈ K, then we

have K ⊂ B(a, ra(K)). Since T is pointwise contraction, there exists a mapping

α : M → [0, 1) such that

d(T (x), T (y)) ≤ α(x)d(x, y) for any y ∈ M.

In particular, we have then T (K) ⊂ B(T (a), α(a)ra(K)), which implies cov(T (K)) ⊂
B(T (a), α(a)ra(K)). So rT (a)(K) ≤ α(a)ra(K). This will force diam(K) = 0. In-

deed let a ∈ K and define

Ka = {x ∈ K; rx(K) ≤ ra(K)}.
Clearly Ka is not empty. Moreover we have

Ka =
⋂
x∈K

B(x, ra(K)) ∩K ∈ A(M).

And since rT (a)(K) ≤ α(a)ra(K), we get T (Ka) ⊂ Ka. The minimality behavior

of K implies Ka = K. In particular we have rx(K) = ra(K) for any x ∈ K.

Hence diam(K) = ra(K), for any a ∈ K, i.e. a is a diametral point of K. Hence

diam(K) ≤ α(a)diam(K). And since α(a) < 1, we get diam(K) = 0, i.e. K

is reduced to one point which is fixed by T . Hence the fixed point set of T is

not empty. The remaining conclusion of the theorem follows from the general

properties of pointwise contractions. ¤
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It is well known [2, 7] that if M is hyperconvex, then A(M) is compact, hence

we obtain:

Corollary 1. Let M be a bounded hyperconvex metric space. Let T : M → M

be a pointwise contraction. Then T has a unique fixed point, x0. Moreover the

orbit {T n(x)} converges to x0, for each x ∈ M .

4. Asymptotically Pointwise Contractions

Let M be a metric space and F a convexity structure. We will say that a

function Φ : M → [0,∞) is F -convex if {x; Φ(x) ≤ r} ∈ F for any r ≥ 0. Also

we define a type to be a function Φ : M → [0,∞) defined as

Φ(u) = lim sup
n→∞

d(xn, u)

where (xn) is a bounded sequence in M . Types are very useful in the study of

the geometry of Banach spaces and the existence of fixed point of mappings. We

will say that a convexity structure F on M is T-stable if types are F -convex. We

have the following lemma.

Lemma 4.1. Let M be a metric space and F a compact convexity structure on

M which is T-stable. Then for any type Φ, there exists x0 ∈ M such that

Φ(x0) = inf{Φ(x); x ∈ M}.
The proof is easy and will be omitted.

Theorem 4.1. Let M be a bounded metric space. Assume that the convexity

structure A(M) is compact. Let T : M → M be a strongly asymptotic pointwise

contraction. Then T has a unique fixed point, x0. Moreover the orbit {T n(x)}
converges to x0, for each x ∈ M .

Proof. First note that T has at most one fixed point. Indeed, let a, b ∈ M be two

fixed points of T . Then we have

d(a, b) = d(T n(a), T n(b)) ≤ αn(a)d(a, b).

If we let n go to infinity, we get d(a, b) ≤ kd(a, b) for some k ∈ (0, 1). This will

force d(a, b) = 0. Next let x ∈ M and define the type

Φ(u) = lim sup
n→∞

d(T n(x), u), for each u ∈ M.
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Since A(M) is compact, then

Ω(x) =
⋂
n≥1

cov
(
{T k(x); k ≥ n}

)
6= ∅.

Let ω ∈ Ω(x). Then we have

d(Tm+n+h(x), Tm+h(x)) ≤ αh(T
m(x))d(T n(x), Tm(x)).

If we let n go to infinity, we get

Φ(Tm+h(x)) ≤ αh(T
m(x))Φ(Tm(x)).

Next we let h go to infinity to get

lim sup
n→∞

Φ(T n(x)) ≤ kΦ(T n(x))

for some k ∈ (0, 1), which easily implies that lim sup
n→∞

Φ(T n(x)) = 0. Next we

notice that

Φ(ω) ≤ lim sup
n→∞

Φ(T n(x)) = 0.

Indeed let u ∈ M , then for any ε > 0, then there exists n0 ≥ 1 such that for any

n ≥ n0

d(T n(x), u) ≤ Φ(u) + ε.

In particular we have T n(x) ∈ B(u, Φ(u) + ε), for any n ≥ n0. So

Ω(x) ⊂ cov
(
{T n(x); n ≥ n0}

)
⊂ B(u, Φ(u) + ε),

which implies ω ∈ B(u, Φ(u) + ε). This is true for any ε > 0. Hence for any

u ∈ M we have d(ω, u) ≤ Φ(u). Hence

Φ(ω) = lim sup
n→∞

d(T n(x), ω) ≤ lim sup
n→∞

Φ(T n(x)).

Therefore we have Φ(ω) = 0 which implies that {T n(x)} converges to ω. This

will force ω to be a fixed point of T . Since we already noticed that T has at most

one fixed point, then T has a fixed point x0 and any orbit converges to x0. ¤

If M is hyperconvex, then A(M) is compact, hence we obtain:
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Corollary 2. Let M be a bounded hyperconvex metric space. Let T : M → M

be a strongly asymptotic pointwise contraction. Then T has a unique fixed point,

x0. Moreover the orbit {T n(x)} converges to x0, for each x ∈ M .

Next we relax the strong behavior of T but assume that types are convex to

obtain the following result

Theorem 4.2. Let M be a bounded metric space. Assume that there exists

a convexity structure F which is compact and T-stable. Let T : M → M be an

asymptotic pointwise contraction. Then T has a unique fixed point, x0. Moreover

the orbit {T n(x)} converges to x0, for each x ∈ M .

Proof. Similarly one can easily show that T has at most one fixed point. As we

did in the proof of the previous result, let x ∈ M and define the type

Φ(u) = lim sup
n→∞

d(T n(x), u), for each u ∈ M.

Since F is compact and T-stable, then there exists x0 ∈ M such that

Φ(x0) = inf{Φ(u); u ∈ M}.
Let us show that Φ(x0) = 0. Indeed we have

d(T n+m(x), Tm(x0)) ≤ αm(x0)d(T n(x), x0),

for any n,m ≥ 1. If we let n go to infinity, we get

Φ(Tm(x0)) ≤ αm(x0)Φ(x0)

which implies

Φ(x0) = inf{Φ(u); u ∈ M} ≤ Φ(Tm(x0)) ≤ αm(x0)Φ(x0).

If we let m go to infinity, we get Φ(x0) ≤ α(x0)Φ(x0). Since α(x0) < 1, we get

Φ(x0) = 0, which implies that {T n(x)} converges to x0. This will force x0 to be

a fixed point of T . Since we already noticed that T has at most one fixed point,

then T has a fixed point x0 and any orbit converges to x0. ¤

5. Asymptotic Pointwise Nonexpansive mappings

We should note that any result on asymptotic pointwise nonexpanisve map-

pings in metric spaces should extend what is known on asymptotic nonexpansive

mappings in metric spaces. Unfortunately only a partial result in hyperconvex
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metric spaces is known (see [11]). Here we extend the result found in [15] in

uniformly Banach spaces to CAT(0) metric spaces. Indeed these metric spaces

offer a nice example of uniformly convex metric spaces. It is not clear that the

main inequality used in [15] satisfied in uniformly convex Banach spaces has a

similar one in uniformly convex metric spaces.

A metric space (X, d) is said to be a length space if each two points of X are

joined by a rectifiable path (that is, a path of finite length) and the distance

between any two points of X is taken to be the infimum of the lengths of all rec-

tifiable paths joining them. In this case, d is said to be a length metric (otherwise

known an inner metric or intrinsic metric). In case no rectifiable path joins two

points of the space the distance between them is said to be ∞.

A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x to

y) is a map c from a closed interval [0, l] ⊂ R to X such that c (0) = x, c (l) = y,

and d (c (t) , c (t′)) = |t− t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and

d (x, y) = l. The image α of c is called a geodesic (or metric) segment joining x

and y. (X, d) is said to be a geodesic space if every two points of X are joined by a

geodesic. X is said to be uniquely geodesic if there is exactly one geodesic joining

x and y for each x, y ∈ X, which we will denote by [x, y] called the segment

joining x to y.

A geodesic triangle ∆ (x1, x2, x3) in a geodesic metric space (X, d) consists

of three points in X (the vertices of ∆) and a geodesic segment between each

pair of vertices (the edges of ∆). A comparison triangle for geodesic triangle

∆ (x1, x2, x3) in (X, d) is a triangle ∆ (x1, x2, x3) := ∆ (x̄1, x̄2, x̄3) in M2
κ such

that dR2 (x̄i, x̄j) = d (xi, xj) for i, j ∈ {1, 2, 3} . If κ > 0 it is further assumed that

the perimeter of ∆ (x1, x2, x3) is less than 2Dκ, where Dκ denotes the diameter

of M2
κ . Such a triangle always exists.

A geodesic metric space is said to be a CAT(κ) space if all geodesic triangles

of appropriate size satisfy the following CAT(κ) comparison axiom.

CAT(κ): Let ∆ be a geodesic triangle in X and let ∆ ⊂ M2
κ be a comparison

triangle for ∆. Then ∆ is said to satisfy the CAT(κ) inequality if for all x, y ∈ ∆
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and all comparison points x̄, ȳ ∈ ∆,

d (x, y) ≤ d (x̄, ȳ) .

Complete CAT(0) spaces are often called Hadamard spaces. These spaces are

of particular relevance to this study.

Finally we observe that if x, y1, y2 are points of a CAT(0) space and if y0 is

the midpoint of the segment [y1, y2], which we will denote by
y1 ⊕ y2

2
, then the

CAT(0) inequality implies

(1) d

(
x,

y1 ⊕ y2

2

)2

≤ 1

2
d (x, y1)

2 +
1

2
d (x, y2)

2 − 1

4
d (y1, y2)

2

because equality holds in the Euclidean metric. In fact (see [3], p. 163), a geodesic

metric space is a CAT (0) space if and only if it satisfies inequality (1) (which is

known as the CN inequality of Bruhat and Tits [4]). Moreover if M is a CAT(0)

metric space and x, y ∈ M , then for any α ∈ [0, 1] there exists a unique point

αx⊕ (1− α)y ∈ [x, y] such that

(2) d
(
z, αx⊕ (1− α)y

)
≤ αd(z, x) + (1− α)d(z, y), for any z ∈ M,

and [x, y] = {αx⊕ (1− α)y, α ∈ [0, 1]}.
Let M be a complete CAT(0) space. A subset C ⊂ M is convex if for any

x, y ∈ C we have [x, y] ⊂ C. Denote by C(M) the family of all closed convex

subsets of M . Then C(M) defines a convexity structure which is compact and

uniformly normal [6]. Note that any type function is convex, i.e. C(M) is T-

convex. This follows easily from the inequality (2). A direct implication of

these properties is that any type function achieves its infinimum, i.e. for any

bounded sequence {xn} in a CAT(0) space M , there exists ω ∈ M such that

Φ(ω) = inf{Φ(x); x ∈ M}, where

Φ(x) = lim sup
n→∞

d(xn, x).
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Theorem 5.1. Let M be a complete CAT(0) metric space. Let C be a bounded

closed nonempty convex subset of M . Then any T : C → C pointwise asymptot-

ically nonexpansive has a fixed point. The fixed point set Fix(T ) is closed and

convex, i.e. Fix(T ) ∈ C(M).

Proof. As before, let x ∈ C and define the type

Φ(u) = lim sup
n→∞

d(T n(x), u), for any u ∈ C.

Let ω ∈ C such that Φ(ω) = inf{Φ(u); u ∈ C} = Φ0. We have seen that

Φ(T n(ω)) ≤ αn(ω)Φ(ω) = αn(ω)Φ0, for any n ≥ 1. The CN inequality implies

d

(
T n(x),

Tm(ω)⊕ T h(ω)

2

)2

≤ 1

2
d (T n(x), Tm(ω))2 +

1

2
d

(
T n(x), T h(ω)

)2

−1

4
d

(
Tm(ω), T h(ω)

)2
.

If we let n go to infinity, we get

Φ2
0 ≤ Φ

(
Tm(ω)⊕ T h(ω)

2

)2

≤ 1

2
Φ(Tm(ω))2+

1

2
Φ(T h(ω))2−1

4
d

(
Tm(ω), T h(ω)

)2
,

which implies

d
(
Tm(ω), T h(ω)

)2 ≤ Φ2
0

(
2αm(ω)2 + 2α2

h(ω)− 4
)
.

Since T is pointwise asymptotic nonexpansive, we get

lim sup
m,h→∞

(
Tm(ω), T h(ω)

)2 ≤ 0,

which implies {T n(ω)} is a Cauchy sequence. Let v = lim
n→∞

T n(ω). Since T is

continuous, then T (v) = v, i.e. v is a fixed point of T . This proves that Fix(T )

is not empty. Again since T is continuous, Fix(T ) is closed. In order to prove

that Fix(T ) is convex, it is enough to prove that
x⊕ y

2
∈ Fix(T ), whenever

x, y ∈ Fix(T ). Indeed set ω =
x⊕ y

2
. The CN inequality implies

d (T n(ω), ω)2 ≤ 1

2
d (x, T n(ω))2 +

1

2
d (y, T n(ω))2 − 1

4
d(x, y)2,
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for any n ≥ 1. Since

d (x, T n(ω))2 = d (T n(x), T n(ω))2 ≤ α2
n(ω)d(ω, x)2 =

α2
n(ω)d(x, y)2

4
,

and

d (y, T n(ω))2 = d (T n(y), T n(ω))2 ≤ α2
n(ω)d(ω, y)2 =

α2
n(ω)d(x, y)2

4
,

we get

d (T n(ω), ω)2 ≤

(
α2

n(ω)− 1
)
d(x, y)2

4
,

for any n ≥ 1. Since T is pointwise asymptotic nonexpansive, we get lim
n→∞

T n(ω) =

ω, which implies T (ω) = ω, i.e. ω ∈ Fix(T ). ¤

If U ,V are bounded subsets of a metric space X, let H denote the Hausdorff

metric defined as usual by

H(U, V ) = inf{ε > 0 : U ⊂ Nε(V ) and V ⊂ Nε(U)},
where Nε(V ) = {y ∈ X : d(y, V ) < ε}. Let E be a subset of a metric space X. A

mapping T : E → 2X with nonempty bounded values is nonexpansive provided

H(T (x), T (y)) ≤ d(x, y) for all x, y ∈ E. Let t : E → E and T : E → 2X with

T (x) ∩ E 6= ∅ for x ∈ E. Then t and T are said to be commuting mappings if

t(y) ∈ T (t(x))∩E for all y ∈ T (x)∩E and for all x ∈ E. A point z ∈ X is called

a center [8] for a mapping t : E → X if for each x ∈ E, d(z, t(x)) ≤ d(z, x). The

set Z(t) denotes the set of all centers of the mapping t.

As an application of our Theorem 5.1 we obtain:

Theorem 5.2. Let M be a complete CAT(0) space and C be a bounded closed

convex subset of M . Assume t : C → C is pointwise asymptotically nonexpansive

and T : C → 2C is nonexpansive mappings with T (x) a compact convex subset of

C for each x ∈ C. If the mappings t and T commute and satisfy the condition

T (x) ∩ Fix(t) ⊂ Z(t), for all x ∈ Fix(t)

then there is z ∈ C such that z = t(z) ∈ T (z).
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Proof. By Theorem 5.1, a pointwise asymptotically nonexpansive self-mapping

t of a bounded closed convex subset has a nonempty fixed point set A which is

a closed convex subset of M . Since t and T commute, t(y) ∈ T (t(x)) = T (x)

for y ∈ T (x) and x ∈ A, and therefore, T (x) is invariant under t for each

x ∈ A. Since T (x) is a closed bounded convex subset of a CAT (0) space, t has

a fixed point in T (x) and T (x) ∩ A 6= ∅ for x ∈ A. Now consider the mapping

T (.) ∩ A : A → compact convex subsets of A. We claim that this mapping is

nonexpansive. Indeed, if u ∈ T (x)∩A for some x ∈ A, let v be the unique closest

point in T (y) to u for some y ∈ A. Then d(u, v) = inf{d(u,w); w ∈ T (y)}.
However, since u ∈ Z(t), d(u, t(v)) ≤ d(u, v), which contradicts the uniqueness

of v as the closest point to u. Therefore, v = t(v) implying v ∈ T (y) ∩ A. Since

this argument is symmetric in the points x and y, it follows that

H(T (x) ∩ A, T (y) ∩ A) ≤ H(T (x), T (y)) ≤ d(x, y) for x, y ∈ A.

By [10] the nonexpansive mapping T (.) ∩ A : A → compact convex subsets of

A has a fixed point z ∈ T (z) ∩ A. Therefore, z = t(z) ∈ T (z). ¤

The Theorem 5.2 may be seen as an extension to Theorem 4.1 of [5].

Corollary 3. Let M be a complete CAT(0) space and C be a bounded closed

convex subset of M . Assume t : C → C is pointwise asymptotically nonexpansive

and T : C → 2C is nonexpansive mappings with T (x) a compact convex subset of

C for each x ∈ C. If the mappings t and T satisfy the condition

∅ 6= T (x) ∩ Fix(t) ⊂ Z(t), for all x ∈ Fix(t)

then there is z ∈ C such that z = t(z) ∈ T (z).

A close look at the above proof suggests that a pointwise asymptotic mapping

in CAT(0) metric space is may be demi-closed as it was noticed by Göhde [9]

for nonexpanisve mapping in uniformly Banach spaces. Before we state the next

and final result of this work, we need the following notation

{xn} ⇀ ω if and only if Φ(ω) = inf
x∈C

Φ(x),
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where C is a closed convex subset which contains the bounded sequence {xn}
and Φ(x) = lim sup

n→∞
d(xn, x).

Proposition 1. Let M be a CAT(0) metric space. Let C be a bounded closed

nonempty convex subset of M . Let T : C → C be a pointwise asymptotic non-

expansive mapping. Let {xn} ∈ C be an approximate fixed point sequence, i.e.

lim
n→∞

d(xn, T (xn)) = 0, and {xn} ⇀ ω. Then we have T (ω) = ω.

Proof. Since {xn} is an approximate fixed point sequence, then we have

Φ(x) = lim sup
n→∞

d(Tm(xn), x)

for any m ≥ 1. Hence Φ(Tm(x)) ≤ αm(x)Φ(x), for each x ∈ C. In particular, we

have limm→∞ Φ(Tm(ω)) = Φ(ω). The CN inequality implies

d

(
xn,

ω ⊕ Tm(ω)

2

)2

≤ 1

2
d (xn, ω)2 +

1

2
d (xn, Tm(ω))2 − 1

4
d (ω, Tm(ω))2 ,

for any n,m ≥ 1. If we let n →∞, we will get

Φ

(
ω ⊕ Tm(ω)

2

)2

≤ 1

2
Φ (ω)2 +

1

2
Φ (Tm(ω))2 − 1

4
d (ω, Tm(ω))2 ,

for any m ≥ 1. The definition of ω implies

Φ (ω)2 ≤ 1

2
Φ (ω)2 +

1

2
Φ (Tm(ω))2 − 1

4
d (ω, Tm(ω))2 ,

for any m ≥ 1, or

d (ω, Tm(ω))2 ≤ 2Φ (Tm(ω))2 − 2Φ (ω)2 .

If we let m →∞, we will get lim
m→∞

d (ω, Tm(ω)) = 0. Hence T (ω) = ω since T is

continuous. ¤
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