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Abstract. Since bounded hyperconvex metric spaces have the fixed point property for non-
expansive mappings, it is natural to extend such powerful result to asymptotically nonexpan-
sive mappings. Our main result states that the approximate fixed point property holds in this
case. The proof is based on the use, for the first time, of the ultrapower of a metric space.

Introduction

The notion of hyperconvexity is due to Aronszajn and Panitchpakdi [AP] who proved
that a hyperconvex space is a nonexpansive absolute retract, i.e. it is a nonexpansive retract
of any metric space in which it is isometrically embedded. The corresponding linear theory
is well developed and associated with the names of Gleason, Goodner, Kelley and Nachbin
(see for instance [La]). The nonlinear theory is still developing. The recent interest into
these spaces goes back to the results of Sine [Sn1] and Soardi [So] who proved independently
that fixed point property for nonexpansive mappings holds in bounded hyperconvex spaces.
Since then many interesting results have been shown to hold in hyperconvex spaces. For
more on the metric fixed point property, the interested reader may consult [AK] and [GK]
as well as the most recent book [KK].

Recall also that Jawhari, Misane and Pouzet [JMP] were able to show that Sine and
Soardi’s fixed point theorem is equivalent to the classical Tarski’s fixed point theorem in
complete ordered sets. This happens via the notion of generalized metric spaces. Therefore,
the notion of hyperconvexity should be understood and appreciated in a more abstract
formulation.

In opposition to the lack of linearity hyperconvexity provides us with a really rich metric
structure that leads to a collection of surprising and beautiful results related to different
branches of mathematics as, for instance, topology, graph theory, multivalued analysis,
fixed point theory.
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In this work, we investigate some open questions related to the fixed point property (fpp)
in hyperconvex metric spaces. Historically nonexpansive mappings have enjoyed most of
the interest and were at the core of the fpp in hyperconvex metric spaces. The main
motivation of this work was a question by Kirk [Ki2] whether asymptotically nonexpansive
mappings have the fpp in bounded hyperconvex metric spaces. This question is still open.
But we were able to show that asymptotic fixed point property holds in this case. The
proof is nonstandard in nature and uses the notion of ultrapower of a metric space. To
the best of our knowledge this is the first time that such notion is considered in the metric
setting which lead to some positive new results.

Basic Definitions

A metric space M is said to be hyperconvex if given any family {xα} of points of M
and any family {rα} of real numbers satisfying

d(xα, xβ) ≤ rα + rβ

it is the case that ∩αB(xα; rα) 6= ∅.
The fundamental result of [AP] asserts that a metric space M is hyperconvex if and

only if it is injective. Thus M is hyperconvex if given any two metric spaces X and Y with
Y a subspace of X, and any nonexpansive mapping f : Y → M, then f has a nonexpansive
extension f̃ : X → M. Basic results about injective metric spaces can be found in [Is].

An admissible subset of M is a set of the form

⋂

i

B(xi; ri)

where {B(xi; ri)} is a family of closed balls centered at points xi ∈ M with respective
radii ri. It is quite easy to see that an admissible subset of a hyperconvex metric space is
hyperconvex. In what follows we use A(M) to denote the family of all nonempty admissible
subsets of M .

The recent interest into hyperconvexity goes back to the results of Sine [Sn1] and Soardi
[So] who proved that if H is a bounded hyperconvex metric space and T : H → H is
nonexpansive, i.e. d(T (x), T (y)) ≤ d(x, y) for any x, y ∈ H, then there exists a fixed
point x ∈ H, i.e. T (x) = x. Moreover the fixed point set Fix(T ) is hyperconvex and
consequently is a nonexpansive retract of H.

May be the most elegant result in this direction goes to Baillon [Ba] who proved that
the conclusion of Sine and Soardi results is still valid when dealing with any family of
commutative nonexpansive mappings. In fact his proof is based on the following structural
result:
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Theorem.. Let H be a bounded hyperconvex metric space. If {Hi}i∈I is a decreasing
family of nonempty hyperconvex subsets of H, then we have

⋂

i∈I

Hi 6= ∅

and is hyperconvex.

The proof is non-intuitive and very complicated.

When H is not bounded, then a nonexpansive mappings may not have a fixed point.
But it is not hard to see that the nonexpansive mapping T always has an approximate
fixed point, i.e.

inf{d(x, T (x)); x ∈ H} = 0 .

When a map satisfies the above, we say T satisfies the approximate fixed point property.
In this case, the set

Hε = {x ∈ H; d(x, T (x)) ≤ ε}
is not empty for any ε > 0. In fact Sine [Sn2] proved that Hε is hyperconvex.

Next we discuss convexity in hyperconvex metric spaces. Historically there are two
approaches to this. One is based on Penot’s ideas [Pe] based on the notion of convexity
structures who gave the first interesting generalization of the classical Kirk’s fixed point
theorem [Ki1] in metric spaces. The other one mimics the linear convexity. Here we will
use that one. In order to better understand it, we will use a natural embedding of any
metric space M into the Banach space l∞(M) (see [EK] for more on this). So if H is
hyperconvex, then there exists a nonexpansive retract R : l∞(H) → H. For any x, y ∈ H,
we write

tx⊕ (1− t)y = R(tx + (1− t)y)

for ant t ∈ [0, 1]. Here we are using the linear convexity of l∞(H). It is not hard to check
that for any z ∈ H we have

d(z, tx⊕ (1− t)y) ≤ td(z, x) + (1− t)d(z, y)

for ant t ∈ [0, 1].

Ultrapower of Metric Spaces

Let (M,d) be a bounded metric space and U be a nontrivial ultrafilter on the natural
numbers. Consider the cartesian product M =

∏
n≥1

M . Define the equivalence relation ∼
on M by

(xn) ∼ (yn) if and only if lim
U

d(xn, yn) = 0.
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The limit over U exists since M is bounded. Then we consider the quotient set M̃ . An
element x̃ ∈ M̃ is a subset of M. If (xn) ∈ x̃, then (yn) ∈ x̃ if and only if lim

U
d(xn, yn) = 0.

On M̃ define the metric d̃ by
d̃(x̃, ỹ) = lim

U
d(xn, yn)

where (xn) (resp. (yn)) is any element in x̃ (resp. ỹ). It is easy to see that d̃ defines a
metric on M̃ which has many nice properties similar to the linear ultrapower of a Banach
space. For example, it is obvious that M is isometric to a subset of M̃ . Indeed, let

Ṁ = {(̃xn); xn = x for any n ≥ 1} .

Then it is easy to show that M and Ṁ are isometric. In the sequel we will use the notation
M = Ṁ and see x ∈ M as an element of M̃ as well. Also it is worth to mention that if M
is complete, then M̃ is complete. The proof is similar to the linear one. In the linear case it
is known that if X is a finite dimensional Banach space, then X̃ is also a finite dimensional
Banach space with the same dimension as X. The analogue of this is the following result.

Proposition 1. If M is compact then M̃ is also compact and is isometric to M .

Proof. Since M is compact, then for any sequence (xn) ∈ M the limit lim
U

xn = x exists

(in M) since U is an ultrafilter. So we have

lim
U

d(xn, x) = 0

or equivalently (̃xn) = x. Hence M̃ is a subset of Ṁ , i.e. M̃ = Ṁ . Therefore M̃ is
isometric to M and must be compact. ¤

Clearly one may then ask what if M is not compact. In this case it is natural to use
measures of noncompactness. The most commonly used were introduced by Hausdorff and
Kuratowski (see [ADL] for more).

Definition 1. Let (M, d) be a metric space and let B(M) denote the collection of nonempty,
bounded subsets of M .

(1) The Kuratowski measure of noncompactness α : B(M) → [0,∞) is defined by

α(A) = inf{ε > 0; A ⊂
i=n⋃

i=1

Ai with Ai ∈ B(M) and diam(Ai) ≤ ε} .

(2) The Hausdorff (or ball) measure of noncompactness χ : B(M) → [0,∞) is defined
by

χ(A) = inf{r > 0; A ⊂
i=N⋃

i=1

B(xi, r) with xi ∈ M } ,

where B(x, r) denote the closed ball centered at x with radius r.

We have the following more general result:
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Proposition 2. Let A be a bounded subset of M . Set Ã = {(̃xn); xn ∈ A}. Then we have

χ(A) = χ(Ã) .

Proof. Let ε > χ(A) and δ > 0. Then by definition of χ, there exists a finite set D =
{x1, x2, · · · , xN} such that

A ⊂
i=N⋃

i=1

B(xi, ε) .

Consider D̃. Our previous result implies that D̃ is compact. So there exists a finite set
{x̃1, x̃2, · · · , x̃K} such that

D̃ ⊂
i=K⋃

i=1

B(x̃i, δ) .

From here it is easy to see that

Ã ⊂
i=K⋃

i=1

B(x̃i, ε + δ)

which implies
χ(Ã) ≤ ε + δ .

Since δ was chosen arbitrarily then we have χ(Ã) ≤ ε, which implies

χ(Ã) ≤ χ(A) .

In order to complete our proof, we need to show that χ(A) ≤ χ(Ã). Let ε > 0. Set
r = χ(Ã) + ε. Then there exist x̃i (i = 1, · · · ,K) in Ã such that

Ã ⊂
i=K⋃

i=1

B(x̃i, r) .

Set x̃i = ˜(xi(n)), for i = 1, · · · ,K, with xi(n) ∈ A. We claim that for any δ > 0 there
exists n0 ≥ 1 such that

A ⊂
i=K⋃

i=1

B(xi(n0), r + δ) .

Assume not. Then there exists δ0 > 0 such that for any n ≥ 1, there exists xn ∈ A which
satisfies

xn 6∈
i=K⋃

i=1

B(xi(n), r + δ0) .
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Set x̃ = (̃x(n)) ∈ Ã. Then

d̃(x̃, x̃i) = lim
U

d(xn, xi(n)) ≥ r + δ0

for i = 1, · · · ,K. Clearly we have

x̃ 6∈
i=K⋃

i=1

B(x̃i, r)

which is our desired contradiction. So let δ > 0, we know that there exists n0 ≥ 1 such
that

A ⊂
i=K⋃

i=1

B(xi(n0), r + δ) .

This clearly implies
χ(A) ≤ r + δ = χ(Ã) + ε + δ .

Since ε and δ were chosen arbitrarly positive, we conclude that

χ(A) ≤ χ(Ã) ,

which completes the proof of our proposition. ¤
When M is not compact, more can be said about the ultrapower.

Proposition 3. Assume M is not compact. Then M̃ is not separable

Proof. Assume M is not compact. Then there exists a bounded sequence (xn) with no
convergent subsequence. In particular lim

U
xφ(n) does not exists for any subsequence (xφ(n))

of (xn). Moreover we can assume that there exists ε > 0 such that

sep(xn) = inf{d(xn, xm); n 6= m} ≥ ε .

For any subsequence (xφ(n)) of (xn) set x̃φ = ˜(xφ(n)). Clearly we have

d̃(x̃φ, x̃α) = lim
U

d̃(xφ(n), xα(n)) ≥ ε .

Since any sequence has uncountably many subsequences, the above result implies that
M̃ has an uncountable ε-separated set. Therefore M̃ is not separable. ¤

It is quite an amazing result since a linear version of it is also known.

Next we discuss how Lipschitzian mappings extend naturally to the ultrapower. Indeed,
let T : M → M be a Lipschitzian mapping with L as a constant of Lipschitz, i.e.

d(T (x), T (y)) ≤ L d(x, y) for x, y ∈ M.
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Then
lim
U

d(xn, yn) = 0 implies lim
U

d(T (xn), T (yn)) = 0 .

This obviously implies that T̃ : M̃ → M̃ defined by

T̃ ((̃xn)) = ˜(T (xn))

is well defined. It is easy to check that T̃ is Lipschitzian with L as a constant of Lipschitz.
We also have

T̃ (x) = T (x) for any x ∈ M .

Before we jump to the next section where the main result of this work will be stated, it
is worth to mention that hyperconvexity is not a super-property, i.e. the ultrapower of a
hyperconvex metric space is not necessarily hyperconvex.

For more on ultrapowers and nonstandard techniques, the interested reader is advised
to consult [AK] and [Sm].

Main Result

Before we state the main result of this work, we will need some definitions. Let M be a
metric space. A map T : M → M is said to be asymptotically nonexpansive if there exists
a sequence of positive numbers {kn}, with lim

n→∞
kn = 1, such that

d(Tn(x), Tn(y)) ≤ knd(x, y) for any x, y ∈ M and n = 1, 2, · · · .

The main result of our work goes as follows:

Theorem. Let H be a bounded hyperconvex metric space and T : H → H be asymptotically
nonexpansive mapping. Then T has approximate fixed points, i.e.

inf{d(x, T (x)); x ∈ H} = 0 .

Proof. In order to prove the above conclusion, we need to show that for any ε > 0, there
exists x ∈ H such that

d(x, T (x)) ≤ ε.

Using the metric convexity of H, we define the map

Tn =
1
kn

Tn ⊕
(

1− 1
kn

)
x0

where x0 is a fixed point in H and kn is the Lipschitz constant of Tn. The maps {Tn} are
nonexpansive. Consider the ultrapower H̃ of H, over a nontrivial ultrafilter U . Define the
operators T̂ and T̃ by

T̂ (x̃) = T̂ ((̃xn)) = ˜(Tn(xn)) and T̃ (x̃) = T̃ ((̃xn)) = ˜(T (xn)) .
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Since T is asymptotically nonexpansive mapping, the map T̂ is nonexpansive. Moreover
we have

T̂ ((̃xn)) = ˜(Tn(xn)) .

Since Tn is nonexpansive, Sine and Soardi’s fixed point theorem implies the existence of a
fixed point xn (of Tn). The point x̃ = (̃xn) is a fixed point of T̂ . Hence the fixed point set
Fix(T̂ ) is a nonempty subset of H̃. Since the two operators T̂ and T̃ commute, then T̃

leaves invariant the set Fix(T̂ ). It is easy to show that T̃ restricted to Fix(T̂ ) is in fact
an isometry (in particular it is nonexpansive). Fix ε > 0. Let x̃i ∈ Fix(T̂ ), i=1,..,N. If

x̃i =
˜(
xn(i)

)
, for i = 1, · · · , N , set

εn = max
1≤i≤N

d
(
xn(i), Tn(xn(i))

)
.

Then we have
lim
U

εn = 0 .

Set
Hn = {x ∈ H; d(x, Tn(x)) ≤ εn} .

Then Hn 6= ∅ because xn(i) ∈ Hn, for i=1,..,N. Since Tn is nonexpansive, Sine [Sn2] proved
that Hn is hyperconvex. Therefore, there exists

zn(i) = εxn(1)⊕ (1− ε)xn(i) ∈ Hn

for i = 1,..,N. Consider, the point

z̃i =
(̃
zn(i)

)

which we will denote εx̃1 ⊕ (1− ε)x̃i. Then we have, z̃i ∈ Fix(T̂ ), and

d(z̃i, z̃j) ≤ (1− ε)d(x̃i, x̃j)

for i,j=2,..,N. Back to our maps T̂ and T̃ . Let x̃ ∈ Fix(T̂ ). Write x̃ = x̃1. Then from the
above ideas, there exists x̃2 ∈ Fix(T̂ ) such that

x̃2 = εx̃1 ⊕ (1− ε)T̃
(
x̃1

)
.

By induction, we will construct a sequence
(
x̃n

)
of points in Fix(T̂ ) defined by

x̃n+1 = εx̃1 ⊕ (1− ε)T̃
(
x̃n

)
.
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We have for any n < m,

d(x̃n, x̃m) ≤ (1− ε)d

(
T̃

(
x̃n−1

)
, T̃

(
x̃m−1

))

and since T̃ is nonexpansive when restricted to Fix(T̂ ), we get

d(x̃n, x̃m) ≤ (1− ε)d
(
x̃n−1, x̃m−1

)
.

This clearly implies that the sequence
(
x̃n

)
is a Cauchy sequence. Hence it converges to

ω̃ ∈ Fix(T̂ ). Moreover we have

d
(
ω̃, T̃ (ω̃)

)
= lim

n→∞
d
(
x̃n+1, T̃ (x̃n)

)
≤ ε lim

n→∞
d
(
x̃1, T̃ (x̃n)

)
.

If we set δ = diameter(H), we get

d
(
ω̃, T̃ (ω̃)

)
≤ εδ .

Therefore, we have proved that for any ε > 0, there exists ω̃ε ∈ Fix(T̂ ), such that

d
(
ω̃ε, T̃ (ω̃ε)

)
≤ ε .

From this it is easy to extract xε ∈ H, such that

d
(
xε, T (xε)

)
≤ ε

for any ε > 0. ¤

Remark. Recall that Kirk’s original question was about the existence of a fixed point for
such mappings. This problem is still open. But one may use a simple embedding of any
metric space M into l∞(M) (see [EK] for more on this), to show that in fact the main
problem described here is equivalent to the same problem for the unit ball of l∞. It is worth
to mention that the existence of fixed point for asymptotically nonexpansive mappings is
closely related to the existence of fixed point for k-uniformly Lipschitzian mappings in the
linear case (see [KX] for more on this).

The author wishes to thank the referee for valuable comments on the final version of
this work.
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