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Abstract. In this work, we give a characterization of the existence of min-
imal elements in partially ordered sets in terms of fixed point of multivalued
maps. This characterization shows that the assumptions in Caristi’s fixed
point theorem can, a priori, be weakened. Finally, we discuss Kirk’s problem
on an extension of Caristi’s theorem and prove a new positive result which
illustrates the weakening mentioned before.

1. Introduction

This work was motivated by a problem stated by Kirk [7] to improve the

Caristi’s fixed point theorem [3, 7]. Recall that this theorem states that any map

T : M → M has a fixed point provided that M is complete and there exists

a lower semi-continuous map φ mapping M into the nonnegative numbers such

that

d(x, Tx) ≤ φ(x)− φ(Tx) (E1)

for every x ∈ M . This general fixed point theorem has found many applications in

nonlinear analysis. It is shown, for example, that this theorem yields essentially

all the known inwardness results [10] of geometric fixed point theory in Banach

spaces. Recall that inwardness conditions are the ones which assert that, in

some sense, points from the domain are mapped toward the domain. Possibly

the weakest of the inwardness conditions, the Leray-Schauder boundary condition

is the assumption that a map points x of ∂M anywhere except to the outward

part of the ray originating at some interior point of M and passing through x.

The proofs given to Caristi’s result vary and use different techniques (see [3, 5,

6, 13]). It is worth to mention that because of Caristi’s result close connection
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to the Ekeland’s [8] variational principle, many authors refers to it as Caristi-

Ekeland fixed point result. For more on Ekeland’s variational principle and the

equivalence between Caristi-Ekeland fixed point result and the completeness of

metric spaces, the reader is advised to read [14].

In this work we prove a characterization to the existence of minimal elements

in partially ordered sets in terms of fixed point of multivalued maps. Then we

show how Caristi’s theorem may be generalized. We will also discuss a proposed

generalization by Kirk.

2. Minimal Points and Fixed Point Property

Let A be an abstract set partially ordered by ≺. We will say that a ∈ A is a

minimal element of A if and only if b ≺ a implies b = a. The concept of minimal

element is crucial in the proofs given to Caristi’s fixed point theorem.

Theorem 1. Let (A,≺) be a partially ordered set. Then the following statements

are equivalent.

(1) A contains a minimal element,

(2) Any multivalued map T defined on A such that for any x ∈ A, there exists

y ∈ Tx with y ≺ x, has a fixed point, i.e there exists a in A such that

a ∈ T (a).

Proof. (1) ⇒ (2) Obviously any minimal element is fixed by T . We complete the

proof by showing that (2) ⇒ (1). Assume that A fails to have a minimal element.

Define the set valued map T on A by

T (x) = {y ∈ A; y ≺ x with y 6= x},
for any x ∈ A. Clearly our assumption on A implies that T (x) is not empty for

any x ∈ A. (2) will imply that T has a fixed point a ∈ A. Contradiction with

the definition of T , which completes the proof of Theorem 1. ¤

Remark 1. Recall that Taskovic [15] showed that Zorn’s lemma is equivalent to:

(TT) Let F be a family of selfmappings defined on a partially ordered set A

such that

x ≤ f(x) (resp. f(x) ≤ x),

for all x ∈ A and all f ∈ F . If each chain in A has an upper bound (resp.

lower bound), then the family F has a common fixed point.
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So, Theorem 1 is different from the above result since in our statement we

consider the existence of minimal elements, which in general does not imply that

any linearly ordered subset has a lower bound.

In the next result we discuss a common fixed point theorem. Let (M, d) be a

metric space and φ : M → [0,∞) be a map. Define the order ≺φ (see [2, 3, 4])

on M by

x ≺φ y iff d(x, y) ≤ φ(y)− φ(x),

for any x,y in M . It is straightforward that (M,≺φ) is a partially ordered set.

However it is not clear what are the minimal assumptions on M and φ which

oblige M to have minimal elements. In particular, if M is complete and φ is

lower semi-continuous, then any decreasing chain in (M,≺φ) has a lower bound.

Indeed, let (xα)α∈Γ be a decreasing chain, then (φ(xα))α∈Γ is a decreasing net of

positive numbers. Let (αn) be an increasing sequence of elements from Γ such

that

lim
n→∞

φ(xαn) = inf{φ(xα); α ∈ Γ}.

Using the definition of ≺φ one can easily show that (xαn) is Cauchy and therefore

converges to x ∈ M . Finally, it is straightforward that x ≺φ xαn for all n ≥ 1,

which means that x is a lower bound for (xαn)n≥1. In order to see that x is also

a lower bound for (xα)α∈Γ, let β ∈ Γ such that xβ ≺φ xαn for all n ≥ 1. Then

we have φ(xβ) ≤ φ(xαn) for all n ≥ 1 which implies φ(xβ) = inf{φ(xα); α ∈ Γ}.
Since d(xβ, xαn) ≤ φ(xαn) − φ(xβ), we get lim

n→∞
xαn = xβ which implies xβ = x.

Therefore for any α ∈ Γ, there exists n ≥ 1 such that xαn ≺φ xα which implies

x ≺φ xα, i.e. x is a lower bound of (xα)α∈Γ. Zorn’s lemma will therefore imply

that (M,≺φ) has minimal elements.

Corollary 1. Let (M, d) be a metric space and φ : M → [0,∞) be a map.

Consider the partilly ordered set (M,≺φ). Assume that a ∈ M is a minimal

element. Then, any map T : M → M such that for all x ∈ M

d(x, Tx) ≤ φ(x)− φ(Tx),

(i.e Tx ≺φ x) fixes a, i.e Ta = a.
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Remark 2. This corollary can be seen as a generalization of Caristi’s result.

Indeed, the regular assumptions made in Caristi’s theorem imply that any linearly

ordered subset ( for ≺φ) has a lower bound, which is stronger than having a

minimal element (see the remark following Theorem 1.).

Corollary 1 in fact contains implicitly a conclusion for the existence of a com-

mon fixed point. See [4] for a similar conclusion. Also it is worth to mention

that the conclusion of Corollary 1 is similar to the famous result of Brodskii and

Milman [1] who introduced the notion of normal structure of a convex set and

proved that if K is a convex, weakly-compact set with normal structure, then

there is a common fixed point for the set of all surjective isometries of K. Note

that this point is independent of the isometric mappings.

3. Kirk’s Problem

In attempting to generalize Caristi’s fixed point theorem, Kirk [7] has raised

the problem whether a map T : M → M such that for all x ∈ M

η
(
d(x, Tx)

)
≤ φ(x)− φ(Tx), (E2)

for some positive function η, has a fixed point. In fact the original Kirk’s question

was stated when η(t) = T p, for some p > 1.

First let us give an example to answer Kirk’s problem in the negative.

Example 1. Let M = {xn ; n ≥ 1} ⊂ [0,∞) defined by

xn = 1 +
1

2
+

1

3
+ ... +

1

n
,

for all n ≥ 1. Then M is a closed subset of [0,∞) and therefore is complete.

Define T : M → M by Txn = xn+1 for all n ≥ 1. Then,

d(x, Tx)p =
1

(n + 1)p
= φ(x)− φ(Tx),

where φ(xn) =
∞∑

i= n+1

1

ip
, for all n ≥ 1. It is easy to show that φ is lower

semi-continuous. Furthermore one can also show that T is nonexpansive, i.e

d(Tx, Ty) ≤ d(x, y), for all x, y ∈ M . And it is clear that T fails to have a fixed

point.
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Though the above example gives a negative answer to Kirk’s problem, some

positive partial answers may also be found. Note that the order approach to

the traditional Caristi’s result is no longer possible. Indeed, if we define on the

metric spaces M the relation x ≺ y whenever η
(
d(x, y)

)
≤ φ(y)− φ(x), then ≺

is reflexive and anti-symmetric. But it is not in general transitive. Of courser

if η is subadditive, i.e. η(a + b) ≤ η(a) + η(b) for any a, b ∈ [0,∞), then ≺ is

transitive. This is the direction taken by the authors in [9]. We believe that the

subadditivity of η is very constraining. So one may wonder how to approach this

general case when ≺ is not transitive and therefore (M,≺) is not a partial order.

This is not the first time that the author has to deal with this kind of limitations.

Indeed in [12] the authors dealt with a metric-like structure that fails the triangle

inequality.

In what follows we assume that η : [0,∞) → [0,∞) is nondecreasing, contin-

uous, such that there exist c > 0 and δ0 > 0 such that for any t ∈ [0, δ0] we

have η(t) ≥ c t. Because η is continuous, then there exists ε0 > 0 such that

η−1
(
[0, ε0])

)
⊂ [0, δ0].

Under these assumptions we have the following result.

Theorem 2. Let M be a complete metric space. Define the relation ≺ by

x ≺ y ⇐⇒ η
(
d(x, y)

)
≤ φ(y)− φ(x)

where η and φ satisfy all the above assumptions. Then (M,≺) has a minimal

element x∗, i.e. if x ≺ x∗ then we must have x = x∗.

Proof. Set φ0 = inf{φ(x); x ∈ M}. For any ε > 0, set

Mε = {x ∈ M ; φ(x) ≤ φ0 + ε} .

Since φ is lower semi-continuous them Mε is a closed nonempty subset of M .

Also note that if x, y ∈ Mε and x ≺ y, then η
(
d(x, y)

)
≤ φ(y) − φ(x) which

implies

φ0 ≤ φ(x) ≤ φ(y) ≤ φ0 + ε .
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Hence η(d(x, y)) ≤ ε. Using c, ε0, and δ0 associated with η (as defined above),

we get

cd(x, y) ≤ η(d(x, y)) ≤ φ(y)− φ(x)

for any x, y ∈ Mε0 with x ≺ y. On Mε0 we define the new relation ≺∗ by

x ≺∗ y ⇐⇒ d(x, y) ≤ 1

c
φ(y)− 1

c
φ(x) .

Clearly (Mε0 ,≺∗) is a partial order with all necessary assumptions to secure the

existence of a minimal element x∗ for ≺∗. Let us see that x∗ is also a minimal

element for the relation ≺ in M . Indeed let x ∈ M such that x ≺ x∗. Then

we have η(d(x, x∗)) ≤ φ(x∗) − φ(x). In particular we have φ(x) ≤ φ(x∗) which

implies φ(x) ≤ φ0 + ε0; i.e. x ∈ Mε0 . As before we have η(d(x, x∗)) ≤ ε0 which

implies

c d(x, x∗) ≤ η(d(x, x∗)) ≤ φ(x∗)− φ(x)

which implies x ≺∗ x∗. Since x∗ is minimal in (Mε0 ,≺∗) we get x = x∗. This

completes the proof of Theorem 2. ¤

The next result is a positive partial answer to Kirk’s problem.

Theorem 3. Let M be a complete metric space. Let T : M → M be a map such

that for all x ∈ M

η
(
d(x, Tx)

)
≤ φ(x)− φ(Tx),

where the functions η and φ satisfy the assumptions described above, then T has

a fixed point.

Proof. Define the relation ≺ as in Theorem 2. Obviously we have T (x) ≺ x

for any x ∈ M . In particular if x∗ is a minimal element, then we must have

T (x∗) = x∗. ¤

This is an amazing result because the relation ≺ is not a partial order. Also

the minimal point is fixed by any map T so it is independent of the map.

Remark 3. Note that if η is subadditive, then (see [11])

lim
h→0

η(h)

h
= sup

{
η(x)

x
; x > 0

}
. (SA)



REMARKS ON CARISTI’S FIXED POINT THEOREM 7

For the sake of completeness, let us give the proof of (SA). Since η is subadditive,

we have η(nx) ≤ n η(x), for any x ≥ 0 and n ≥ 1. Let h and x such that 0 <

h < x. Then there exists a unique n(h) ≥ 1 such that n(h)h < x ≤ (n(h) + 1)h.

Hence η(x) ≤ η
(
(n(h) + 1)h

)
≤ (n(h) + 1)η(h) which implies

η(x)

x
≤ (n(h) + 1)η(h)

x
≤ (n(h) + 1)η(h)

n(h)h
.

Since lim
h→0

n(h) = ∞, we get

η(x)

x
≤ lim inf

h→0

η(h)

h
.

Obviously this forces

lim sup
x→0

η(x)

x
≤ lim inf

h→0

η(h)

h
,

which implies the existence of the desired limit. The identity (SA) follows easily

from the inequality

η(x)

x
≤ lim

h→0

η(h)

h
.

Clearly this identity will force lim
h→0

η(h)

h
> 0. Hence the constants c > 0 and

δ0 > 0 will exist such that for any t ∈ [0, δ0] we have η(t) ≥ c t.

A multivalued version of Theorem 4 may be obtained.

Theorem 4. Let M be a complete metric space. Let T : M → P(M) be a

multivalued map such that T (x) is not empty and for all x ∈ M there exists

y ∈ T (x) such that

η
(
d(x, y)

)
≤ φ(x)− φ(y),

where the functions η and φ satisfy the assumptions described above, then T has

a fixed point, i.e. there exists x ∈ M such that x ∈ T (x).

Proof. Define the relation ≺ as in Theorem 2. Obviously we have for any x ∈ M

there exists y ∈ T (x) such that y ≺ x. In particular if x∗ is a minimal element

for (M,≺), then we must have x∗ = y, for any y ∈ T (x∗) such that y ≺ x∗.

Therefore we have x∗ ∈ T (x∗). ¤
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