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Abstract

The purpose of this note is to give a natural approach to the extensions of the Banach contraction
principle in metric spaces endowed with a partial order, a directed graph or a binary relation in terms
of extended quasi-metric. This novel approach is new and may open the door to other new fixed point
theorems. The case of multivalued mappings is also discussed and an analogue result to Nadler’s fixed point
theorem in extended quasi-metric spaces is given. c©2016 All rights reserved.
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1. Introduction

Since the very beginning, the Banach contraction principle [3] became a basic tool of Analysis; so that, it
was the subject of many extensions. Among these, the case of ambient metric space being endowed with an
ordering relation was a very promising one. Some early attempts to extend the Banach contraction principle
in this way were performed in the 1986 papers by Turinici [18, 19]. Two decades later, these results have
been re-obtained and refined by Ran and Reurings [15], who also gave some interesting applications of them
to matrix equations theory. Shortly after, Nieto and Rodriguez-Lopez [14] improved the main result of [15]
and used their new extension to solve a lot of practical questions belonging to differential equations theory.
Further extensions of these results have also been given by
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(i) Jachymski [10], who proposed a natural extension of problem setting from partial orders to directed
graphs,

(ii) Ben-El-Mechaiekh [5], who gave a formulation of Ran-Reurings fixed point theorem over metric spaces
endowed with a binary relation,

(iii) Turinici [20], who extended the metrical convergence of the ambient space to (abstract) sequential
convergence structures.

In this paper, we propose a novel approach to Banach contraction principle by considering its extension
to the so-called extended quasi-metric spaces which allows the quasi-distance to take infinite values [6].

In terms of content, this paper overlaps in places with the following popular books on fixed point theory
by Goebel and Kirk [9], by Khamsi and Kirk [11].

2. Basic results

First, we define the concept of an extended quasi-metric space.

Definition 2.1. [6] Let X be an abstract set. The function d̄ : X × X → [0,∞] is called an extended
quasi-distance if the following conditions are satisfied:

(i) d̄(x, y) = 0 ⇔ x = y;

(ii) d̄(x, y) ≤ d̄(x, z) + d̄(z, y), for all x, y, z ∈ X (oriented triangle inequality).

In this case, the pair (X, d̄) is called an extended quasi-metric space.

The reader may find an extensive list of examples on quasi-metric spaces in [6]. One of the problems
dealing with quasi-metric spaces is the issue of a topology and more specifically the concepts of convergence,
Cauchy and completeness [7, 16, 17].

Definition 2.2. Let (X, d̄) be an extended quasi-metric space. A sequence {xn} in X is said to be convergent
if there exists x ∈ X such that limn→+∞ d̄(xn, x) = 0. X is said to be separated if and only if the limit of a
sequence is unique,i.e., whenever limn→+∞ d̄(xn, x) = limn→+∞ d̄(xn, y) = 0 implies x = y. We will say that
a subset Y of X is closed in (X, d̄) if Y contains the limit of any convergent sequence from Y .

Throughout this paper, we will assume that any extended quasi-metric space (X, d̄) is separated. The
concept of Cauchy sequences is little more complicated. We refer the interested reader to the paper [7] for
more details.

Definition 2.3 ([7]). Let (X, d̄) be an extended quasi-metric space. A sequence {xn} in X is said to be
Cauchy if and only if there exists a sequence {ym} such that for any ε > 0, there exists N ≥ 1 such that for
any n,m > N we have

d̄(xn, ym) < ε,

i.e., limn,m→+∞ d̄(xn, ym) = 0. The sequence {ym} is called a cosequence to {xn}. The extended quasi-metric
space (X, d̄) is said to be complete if and only if any Cauchy sequence in (X, d̄) is convergent.

Although this definition is kind of complicated, it allows the following to be true:

Proposition 2.4 ([7]).

(i) Every convergent sequence in (X, d̄) is a Cauchy sequence.

(ii) Every subsequence of a Cauchy sequence is a Cauchy sequence.

(iii) If (X, d̄) is an extended metric space, then Definition 2.3 is equivalent to the usual definition of Cauchy
sequence.

According to [7], the Sorgenfrey line is a complete quasi-metric space, the so called Kofner plane and
Pixley-Roy space, considered as quasi-metric spaces, are also complete.
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3. Banach contraction principle in extended quasi-metric spaces

In order to discuss the Banach contraction principle in extended quasi-metric spaces, we will need to
introduce the concept of Lipschitzian mappings in these spaces.

Definition 3.1. Let (X, d̄) be an extended quasi-metric space. A mapping T : X → X is said to be
Lipschitzian if there exists k > 0 such that

d̄(T (x), T (y)) ≤ k d̄(x, y),

for all x, y ∈ X. If k < 1, then T is said to be a contraction mapping. A point x ∈ X is called a fixed point
of T whenever T (x) = x.

Remark 3.2. Let (X, d̄) be an extended quasi-metric space and T : X → X a d̄-contraction mapping. Then
for any fixed points x and y of T , we have x = y whenever d̄(x, y) <∞.

The following technical lemma will be useful when studying the Banach contraction principle in extended
metric spaces.

Theorem 3.3. Let (X, d̄) be a complete extended quasi-metric space. Let T : X → X be a contraction. Set
XT = {x ∈ X; d̄(x, T (x)) < ∞}. For any x0 ∈ XT , the orbit {Tn(x0)} is Cauchy. Moreover if {Tn(x0)}
converges to x ∈ X, then T (x) = x, i.e., x is a fixed point of T .

Proof. Since T is a contraction mapping, there exists k ∈ (0, 1) such that

d̄(T (x), T (y)) ≤ k d̄(x, y), for any x, y ∈ X.

Hence for any x, y ∈ X and n ∈ N, we have

d̄(Tn(x), Tn(y)) ≤ kn d̄(x, y).

Let x0 ∈ XT , i.e., d̄(x0, T (x0)) <∞. Then

d̄(Tn(x0), T
n+1(x0)) ≤ kn d̄(x0, T (x0)),

for any n ∈ N. Hence for any n, h ∈ N, we have

d̄(Tn(x0), T
n+h+1(x0)) ≤ kn d̄(x0, T

h+1(x0)) ≤ kn
i=h−1∑
i=0

d̄(T i(x0), T
i+1(x0)),

which implies

d̄(Tn(x0), T
n+h+1(x0)) ≤

kn

1− k
d̄(x0, T (x0)).

Hence {Tn(x0)} is Cauchy, since k < 1 and d̄(x0, T (x0)) < ∞, with {Tm(x0)} as its cosequence. Since
(X, d̄) is a complete extended quasi-metric space, {Tn(x0)} converges to x ∈ X. We have

d̄(Tn+1(x0), T (x)) ≤ k d̄(Tn(x0), x), for any n ∈ N.

Hence {Tn+1(x0)} converges to T (x) and x. Since (X, d̄) is separated, we conclude that T (x) = x.

In the next example, we discuss how a partially ordered metric space may be endowed with an extended
quasi-metric structure. Though this example is given for a metric space endowed with a partial order but
the same ideas may be used for metric spaces endowed with a directed graph or a binary relation. In fact,
this example will shed some light on a better understanding of the fixed point theorems of Ran and Reurings
[15], Nieto and Rodŕıguez-López [14], Jachymski [10], and Ben-El-Mechaiekh [5] in connection with Theorem
3.3.
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Example 3.4. Let (X, d,�) be a partially ordered metric space. Define d̄ : X ×X → [0,+∞] by

d̄(x, y) =

{
d(x, y), if x � y;
+∞, otherwise.

It is easy to check that (X, d̄) is an extended quasi-metric space. Next, we discuss the convergence of
sequences in (X, d̄) and how it connects to (X, d). First, it is clear that if {xn} converges to x in (X, d̄),
then it also converges to x in (X, d). This will imply that (X, d̄) is separated. Next, we investigate Cauchy
sequences in (X, d̄). Let {xn} be a Cauchy sequence in (X, d̄). Then there exists a cosequence {ym} in X such
that limn,m→+∞ d̄(xn, ym) = 0. There exists N0 ≥ 1 such that for any n,m ≥ N0 we have d̄(xn, ym) < +∞.
In particular, we have xn � ym, for any n,m ≥ N0. Moreover, the condition limn,m→+∞ d̄(xn, ym) = 0
implies that both sequences {xn} and {ym} are Cauchy in (X, d). Therefore, if (X, d) is complete, then {xn}
and {ym} are convergent to the same limit x ∈ X. In order to show that {xn} converges to x in (X, d̄), we
will need to assume that order intervals are closed. Recall that order intervals are any subset

(←, x] = {y ∈ X; y � x} or [x,→) = {y ∈ X;x � y}

for any x ∈ X. In this case, we will have
xn � x

for any n ≥ N0. Hence we have d̄(xn, x) = d(xn, x), for any n ≥ N0. Clearly, we will have limn→+∞ d̄(xn, x) =
0, i.e., {xn} converges to x in (X, d̄). Therefore, if (X, d) is complete and the order intervals are closed,
then (X, d̄) is a complete quasi-metric space. Next, we investigate Lipschitzian mappings in (X, d̄). Let
T : X → X be a Lipschitzian mapping. Then there exists k > 0 such that

d̄(T (x), T (y)) ≤ k d̄(x, y),

for any x, y ∈ X. Fix x, y ∈ X such that d̄(x, y) < +∞. Then d̄(T (x), T (y)) < +∞ holds. In other words,
if x � y, then T (x) � T (y). This is the definition of a monotone increasing mapping. Moreover, we have

d̄(T (x), T (y)) = d(T (x), T (y)) ≤ k d(x, y) = k d̄(x, y).

Therefore if T is a Lipschitizan mapping in (X, d̄), then T is a Lipchitzian monotone mapping in (X,�, d)
with the same Lipchitz constant. The converse is also true. In particular, T is a monotone contraction
mapping in (X,�, d) if and only if T is a contraction mapping in (X, d̄). Putting all these results together,
we get an analogue result to Theorem 3.3 in partially ordered metric spaces.

Theorem 3.5. Let (X, d,�) be a complete partially ordered metric space, such that

(*) the order intervals are closed.

Furthermore, let T : X → X be a contraction mapping with XT = {x ∈ X; x � T (x)} is nonempty. Then
T has a fixed point in X.

Remark 3.6. Note that the conclusion of Theorem 3.5 will still hold if we assume the following weaker
property:

(**) if {xn} is monotone nondecreasing (resp. nonincreasing) and converges to x, then we have xn � x
(resp. x � xn), for any n ∈ N.

This property was introduced by Nieto and Rodriguez-Lopez [14]. Indeed, in the proof of Theorem 3.3, the
fixed point was the limit of a sequence which is monotone. Therefore, the property (∗∗) is enough to prove
the conclusion of Theorem 3.5.

In the next section, we discuss Nadler’s fixed point theorem for multivalued contractions in extended
quasi-metric spaces.
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4. Nadler’s fixed point theorem in extended metric spaces

The multivalued version of the Banach contraction principle was given by Nadler [13].

Theorem 4.1 ([13]). Let (M,d) be a complete metric space. Denote by CB(M) the set of all nonempty
closed bounded subsets of M . Let T : M → CB(M) be a multivalued contraction mapping, i.e., there exists
k ∈ [0, 1) such that

H(T (x), T (y)) ≤ k d(x, y)

for all x, y ∈M, where H is the Pompeiu-Hausdorff metric on CB(M). Then T has a fixed point in M .

Following the publication of Nadler’s fixed point theorem, many mathematicians gave a number of its
extensions and generalizations; see for instance [8, 12] and references cited therein. In this section, we discuss
an extension of Theorem 4.1 to extended metric spaces. In light of the Example 3.4, our extension gives a
simpler and novel approach to the recent interest around monotone multivalued contraction mappings [1, 4].

Definition 4.2. Let (X, d̄) be an extended quasi-metric space and C(X ) be the class of all nonempty closed
subsets of (X, d̄). A multivalued map T : X → C(X ) is called a contraction mapping if there exists k ∈ (0, 1)
such that for any x, y ∈ X and any u ∈ T (x), there exists v ∈ T (y) such that

d̄(u, v) ≤ k d̄(x, y).

A point x ∈ X is called a fixed point of T if x ∈ T (x).

The following property will be needed to prove the existence of fixed points for multivalued contractive
mappings in quasi-metric spaces.

Definition 4.3. Let (X, d̄) be an extended quasi-metric space. We will say that X satisfies the property
(P1) if for any {xn} in X which converges to x, and {yn} ∈ X such that limn→∞ d̄(xn, yn) = 0, we have
limn→∞ d̄(yn, x) = 0.

Now we are ready to give the multivalued version of Theorem 3.3.

Theorem 4.4. Let (X, d̄) be a complete extended quasi-metric space. Assume that X satisfies the property
(P1). Let T : X → C(X) be a contraction mapping. Assume that XT := {x ∈ X; d̄(x, u) <∞ for some u ∈
T (x)} 6= ∅. Then T has a fixed point.

Proof. Let x0 ∈ XT . Then there exists x1 ∈ T (x0) such that d̄(x0, x1) < ∞. Since T is a contraction
mapping, there exists k ∈ (0, 1) such that for any x, y ∈ X and any u ∈ T (x), there exists v ∈ T (y) such
that

d̄(u, v) ≤ k d̄(x, y).

Hence there exists x2 ∈ T (x1) such that

d̄(x1, x2) ≤ k d̄(x0, x1).

By induction, we construct a sequence {xn} such that xn+1 ∈ T (xn) and

d̄(xn, xn+1) ≤ k d̄(xn, xn−1) ≤ kn d̄(x0, x1)

for any n ∈ N. Hence for any n, h ∈ N, we have

d̄(xn, xn+h) ≤ kn

1− k
d̄(x0, x1).

Hence {xn} is Cauchy, since k < 1 and d̄(x0, x1) < ∞, with {xm} as its cosequence. Since (X, d̄) is a
complete extended quasi-metric space, {xn} converges to x ∈ X. Since T is a contraction, there exists
yn ∈ T (x) such that

d̄(xn+1, yn) ≤ k d̄(xn, x)

for any n ∈ N. Hence limn→∞ d̄(xn+1, yn) = 0 holds. Since X satisfies the property (P1), and {xn+1}
converges to x, we conclude that limn→∞ d̄(yn, x) = 0. Since T (x) is closed, we conclude that x ∈ T (x), i.e.,
x is a fixed point of T as claimed.
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Math., 3 (1922), 133–181. 1
[4] I. Beg, A. R. Butt, Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric

spaces, Nonlinear Anal., 71 (2009), 3699–3704. 4
[5] H. Ben-El-Mechaiekh, The Ran-Reurings fixed point theorem without partial order: a simple proof, J. Fixed Point

Theory Appl., 16 (2014), 373–383. 1, 3
[6] M. M. Deza, E. Deza, Encyclopedia of distances, Springer-Verlag, Berlin Heidelberg, (2009). 1, 2.1, 2
[7] D. Doitchinov, On completeness in quasi-metric spaces, Topology Appl., 30 (1988), 127–148. 2, 2, 2.3, 2.4, 2
[8] Y. Feng, S. Liu, Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings,

J. Math. Anal. Appl., 317 (2006), 103–112. 4
[9] K. Goebel, W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics,

Cambridge University Press, Cambridge, (1990). 1
[10] J. Jachymski, The Contraction Principle for Mappings on a Metric Space with a Graph, Proc. Amer. Math. Soc.,

136 (2008), 1359–1373. 1, 3
[11] M. A. Khamsi, W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied

Mathematics, John Wiley & Sons, New York, (2001). 1
[12] D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math.

Anal. Appl., 334 (2007), 132–139. 4
[13] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488. 4, 4.1
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