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Abstract
the physical notion of dissipative process gave rise to a mathematical notion of

dissipative mapping of metric spaces, that has many applications to mathematical
physics and nonlinear analysis.
We describe a physical motivated way to generalize this notion to probabilistic metric
spaces(also called Menger spaces) and prove that well-known fixed point theorems for
dissipative mappings can be generalized to Menger spaces.
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1 Introduction and Preliminaries.

The notion of a probabilistic metric space (Menger space) corresponds to the situations when
we do not know the distance between the points, we know only probabilities of possible val-
ues of this distance. Such a probabilistic generalization of metric spaces appears to be well
adapted for the investigation of physical quantities and physiological thresholds. It is also
of fundamental importance in probabilistic functional analysis.
For a detailed discussion of Menger spaces and their applications, we refer to [5]. Let us give
a formal definition

Definition 0. A map F : R → R is called a distribution function if it is nondecreasing,
right-continuous with inf F (x) = 0 and sup F (x) = 1. We will denote by ∆ the set of all
distribution functions and by ∆+ the set of distributions F such that F (0) = 0.
A commutative, associative and nondecreasing mapping t : [0, 1] × [0, 1] → [0, 1] is called a
T -norm if and only if

(i) t(a, 1) = a for all a ∈ [0, 1],

(ii) t(0, 0) = 0.

One can easily check that t(a, b) = Min(a, b) is a T -norm, and that any T -norm satisfies
the inequality

t(a, b) ≤ Min(a, b).

Definition 1. A Menger space is a triple (X, F, t), where X is a set, F : X ×X → ∆+

and t is a T -norm. By Fx,y we mean F (x, y). The map F must satisfy the following three
conditions.

(1) Fx,y = Fy,x for all x, y ∈ X,

(2) Fx,y(ε) = 1 if and only if x = y,

(3) for all x, y, z ∈ X and ε, δ > 0, we have

Fx,y(ε + δ) ≥ t(Fx,z(ε), Fz,y(δ)).

Let us recall the notion of a dissipative mapping that is physically well motivated and
has many applications to nonlinear analysis and to mathematical physics. First a physical
motivation. Suppose we consider a particle (or, more general, a physical system) that can be
located in different points of a space X (X can also be phase space,i.e., represent different
values of some additional parameters). By E(x), for x ∈ X, let us denote the potential
energy of a particle located in the point x. Consider e(x, y) to be the minimal energy that
is necessary to use in order to move the particle from the position x to the position y. Then
evidently we have :

(1) e(x, x) = 0 for every x ∈ X.

(2) e(x, y) ≤ e(x, z) + e(z, y) for every x, y, z ∈ X.
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We assume that the function e(., .) is symmetric. Then one can easily check that d(x, y) =
e(x, y) defines a pseudometric on X, i.e. in other words the relation d(x, x) = 0 is an
equivalence relation and d is a metric on the factor-space with respect to this relation.
If a function T describes the evolution of this system (or particle) (in the sense that if it was
initially in x then in the next moment of the time it will be in Tx), then evidently

d(x, Tx) ≤ E(x)− E(Tx),

because the transformation T is just one of the ways to achieve y = Tx from x and d(x, Tx)
is by definition the minimal possible energy loss. This inequality is used as a definition of a
E-dissipative mapping.
The correspondent physical situation corresponds to the irreversible loss (dissipation) of
energy. However, from physical viewpoint this picture is only approximately true. When we
say that the evolution is irreversible in the sense that starting from a chaotic state (e.g. all
molecules of a gas uniformly distributed) we cannot come spontaneously to a more organized
state (all molecules are in one half of the vessel) really we understand that in principle such
an evolution is possible, but the probability of such a ”fluctuation” is small. This is due to the
fact that when we describe the state x by the values of the corresponding macro-observables
we mix together several microstates. The transition is possible without the energy loss even
when d(x, y) > 0. In other words, in this case the minimal energy loss d(x, y) from state
x to a state y depends on the microstate and is a random variable. We will describe these
random variables by their distributions

Fx,y(a) = P (d(x, y) < a).

What is the analog of the triangle inequality here? If d(x, y) < a and d(y, z) < b then
d(x, z) < a + b. If we consider all the pairs as independent we conclude that the probability
that d(x, z) < a + b is greater or equal than the product of the probabilities that d(x, y) < a
and d(y, z) < b. In general we can make other assumptions and therefore come with different
functions instead of a product that correspond to ”and”. The natural demands that A&B
means the same as B&A, that (A&B)&C and A&(B&C) mean the same, lead naturally to
the definition of a T -norm t, and so we come to the inequality

Fx,z(a + b) ≥ t(Fx,y(a), Fy,z(b)).

Moreover it is natural to assume that if we change the probability of A or B a little bit then
the probability of A&B should also change slightly, so we will restrict ourselves to continuous
T -norms. So we conclude that X is a stochastic metric space.
Let us now denote by p(E) the probability of a “normal” evolution (i.e. the evolution that
obeys the statistical laws) in case the energy changes by E. If we do not have any change
at all then p(0) = 1. If we make a transition with the energy difference E + E ′, it can be
in principle represented as first diminishing the energy by E and then by E ′. Then in order
that this transition be normal it is necessary (but may be not sufficient) that the transitions
on E and E ′ are normal, so

p(E + E ′) ≤ t(p(E), p(E ′)).

4



In these terms our definition of E(x) leads to the conclusion that, unless the fluctuation
occurs, E(Tx) ≤ E(x)− d(x, Tx), i.e. d(x, Tx) ≤ E(x)− E(Tx). Therefore the probability
***********************************

Fx,Tx(E(x)− E(Tx)) ≥ p(E(x)− E(Tx)).

Definition 2. Let (X, F, t) be a Menger space, where t is a continuous T -norm. Let λ :
X → R+ be a lower semi-continuous function. We will say that T : X → X is λ-dissipative
if and only if there exists h : R → (0, 1) for which lim

ε→0
h(ε) = 1 and h(a + b) ≤ t(h(a), h(b))

such that
Fx,Tx(λ(x)− λ(Tx)) ≥ h(λ(x)− λ(Tx)),

for every x ∈ X.

Remark. The inequality h(a + b) ≤ t(h(a), h(b)) implies easily that h is nonincreasing.
And if t(., .) = Min(., .), then this inequality is indeed equivalent to the fact that h is non-
increasing.

Recall that (X, F, t) is a Hausdorff topological space where the topology is defined by the
following family of neighborhoods

{Nx(a, b); x ∈ X, a > 0 and b ∈ (0, 1)},

where Nx(a, b) = {y ∈ X; Fx,y(a) > 1 − b}. In [5], the proof is given of the fact that this
topology is metrizable.
For the seek of completeness, we give the proof of the following technical lemma.

Lemma. Let (X, F, t) be a Menger space with continuous t. If limn xn = x and limn yn =
y, where (xn) and (yn) are some sequences from X and x, y ∈ X, then weak− limn Fxn,yn =
Fx,y, i.e. Fxn,yn(ε) → Fx,y(ε) for every ε which is a point of continuity of Fx,y.

Proof. Since xn → x and yn → y we conclude that for every a > 0 and b ∈ (0, 1), there
exists an n0 ≥ 1 such that for every n ≥ n0 we get Fx,xn(a) > 1 − b and Fy,yn(a) > 1 − b.
Therefore applying the triangle inequality we conclude that

Fxn,yn(a′) > t(Fx,xn(a), Fx,y(a
′ − 2a), Fy,yn(a)) ≥ t(1− b, 1− b, Fx,y(a

′ − 2a)),

where a′ is a point of continuity of Fx,y. Therefore for arbitrary small ε > 0 and for small b,
we have

Fx,y(a
′ − 2a) > Fx,y(a

′)− ε.

The function t is continuous so

t(1− b, 1− b, Fx,y(a
′)− ε) > t(1, 1, Fx,y(a

′)− ε)− ε = (Fx,y(a
′)− ε)− ε.

Therefore for every n ≥ n0, we have

Fxn,yn(a′) > Fx,y(a
′)− 2ε.
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Let us complete the proof by showing that

Fxn,yn(a′) < Fx,y(a
′) + 2ε.

Indeed, using the same triangle inequality we conclude that

Fx,y(a
′ + 2a) ≥ t(Fx,xn(a), Fxn,yn(a′), Fy,yn(a)) ≥ t(1− a, 1− a, Fxn,yn(a′)).

The function t is continuous on a square (that is compact), so it is uniformly continuous.
Therefore for sfficently small b we have

t(1− b, 1− b, z) > t(1, 1, z)− ε = z − ε.

So for such b we conclude that Fxn,yn(a′) < Fx,y(a
′ + 2a) + ε. But a′ is a point of continuity

of Fx,y, therefore for sufficiently small b we get

Fx,y(a
′ + 2a) < Fx,y(a

′) + ε.

The proof is therefore complete.

Example. Let (M, d) be a metric space. Define F : M ×M → ∆+ by

Fx,y(ε) = H(ε− d(x, y)),

where we denote by H the distribution function defined by

H(ε) = 0 if ε < 0, and 1 otherwise.

Then (M, F, Min) is a Menger space, and

Nx(ε, b) = {y ∈ M ; d(x, y) ≤ ε}.

So (M, F, Min) is a complete Menger space if and only if (M, d) is a complete metric space.
For the definition of complete Menger spaces, one can consult [5].

2 Main results.

Before stating any fixed point result, we introduce the analog partial order that was used by
Bronsted [1] (see also [4]).

Theorem 1. Let (X,F, t) be a complete Menger space. Let λ : X → [0,∞) be a
lower semi-continuous function and h : R → (0, 1) for which lim

ε→0
h(ε) = 1 and h(a + b) ≤

t(h(a), h(b)). Define the partial order ≺ by

x ≺ y iff Fx,y(λ(y)− λ(x)) ≥ h(λ(y)− λ(x)).
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Then, any decreasing chain in (X,≺) has a lower bound. In particular X contains minimal
elements with respect to ≺.

Proof. First, it is elementary that ≺ defines indeed a partial order on X. Let (xα)α∈Γ

be a decreasing chain, where Γ is a directed set. Then, since every Fx,y belongs to ∆+, we
obtain that (λ(xα))α∈Γ is a decreasing net of positive numbers. let

λ0 = inf{λ(xα); α ∈ Γ}.

So, for every n ≥ 1, there exists αn ∈ Γ such that

λ(xαn) ≤ λ0 +
1

n
.

One can assume that (αn) is increasing. Let a > 0 and b ∈ (0, 1), then one can find n0 ≥ 1
such that

λ(xαn)− λ(xαm) ≤ a, and h(λ(xαn)− λ(xαm)) ≥ 1− b,

for every m ≥ n ≥ n0. Therefore, we have

xαm ∈ Nxαn
(a, b),

for every m ≥ n ≥ n0.
This means that (xαn) is a Cauchy sequence in (X, F, t). Let ω ∈ X be the limit of (xαn),
which exists since (X, F, t) is complete. We show that ω is in fact a lower bound for (xα)α∈Γ.
First notice that ω ≺ xαn for all n ≥ 1. Indeed, using the lower semi-continuity of λ, one
gets

λ(ω) ≤ λ0.

For every m ≥ n ≥ 1, we have

Fxαm ,xαn
(λ(xαn)− λ(ω)) ≥ h(λ(xαn)− λ(ω))

since Fx,y are nondecreasing for every x, y ∈ X and h is nonincreasing. Let a > λ(xαn)−λ(ω)
be a point of continuity of Fxαn ,ω. Then using the technical lemma, we get

Fxαn ,ω(a) = lim
m→∞

Fxαn ,xαm
(a) ≥ h(λ(xαn)− λ(ω)).

Since the points of discontinuity of Fxαn ,ω are countable and using the right continuity of
Fxαn ,ω, we have

Fxαn ,ω(λ(xαn)− λ(ω)) ≥ h(λ(xαn)− λ(ω)),

i.e. ω ≺ xαn for every n ≥ 1.
Now, we complete the proof of our claim. Indeed, let α ∈ Γ. If α ≤ αn for some n ≥ 1, then

ω ≺ xαn ≺ xα.

Otherwise, assume that αn ≤ α for all n ≥ 1. Then λ(xα) ≤ λ(xαn), which clearly implies
that

lim
n→∞

λ(xαn) = λ0 ≥ λ(xα)
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since λ is lower semi-continuous. It is therefore obvious that we have λ(xα) = λ0. This will
imply easily that

lim
n→∞

xαn = xα.

Uniqueness of the limit will oblige xα to be equal to ω. Therefore, we get

ω ≺ xα

for all α ∈ Γ. In order to complete the proof of Theorem 1, one can use Zorn’s lemma.

The next theorem can be seen as an analoguous to Caristi’ s result [2] (see also [1,4]).

Theorem 2. Let (X, F, t) be a complete Menger space and T : X → X be a λ-dissipative
map.
Then T has a fixed point, i.e. there exists x ∈ X such that T (x) = x.

Proof. Using the order described in Theorem 1, we get

T (x) ≺ x

for every x ∈ X. Let ω be a minimal element in X. Then clearly we have T (ω) = ω, which
finishes the proof of Theorem 2.

In [5], the concept of contraction maps in Menger spaces is defined. let us recall this
definition.

Definition 4. Let (X, F, t) be a Menger space and T : X → X be a map. We will say
tha T is a contraction if there exists k ∈ (0, 1) such that

FTx,Ty(ε) ≥ Fx,y(
ε

k
)

for every x, y ∈ X and ε > 0.

It is not hard to prove that there exists λ : X × (0, 1] → R+ such that

(∗∗) Fx,Tx(λ(x, ε)− λ(Tx, ε)) ≥ ε

for every ε ∈ (0, 1] and x ∈ X. Moreover, the function λ is weak-lower semi-continuous, i.e.
the maps λε : X → R+ defined by

λε(x) = λ(x, ε)

are lower semi-continuous.

In the next theorem, we discuss a fixed point result for mappings satifying (∗∗).
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Theorem 3. Let (X, F, t) be a complete Menger space, λ : X × (0, 1] → R+ be weak-
lower semi-continuous and h : (0, 1] → (0, 1] be a function satifying sup h(ε) = 1. Define the
partial order ≺ on X by

x ≺ y iff Fx,y(λ(y, ε)− λ(x, ε)) ≥ h(ε).

Then, any decreasing chain in X has a lower bound. In particular X contains minimal ele-
ments with respect to ≺.

Proof. It is easy to check that ≺ defines a partial order on X. Let (xα)α∈Γ be a decreasing
chain, where Γ is a directed set. Then again since Fx,y ∈ ∆+, we deduce that (λ(xα, ε)) is a
decreasing net of positive numbers, for every ε ∈ (0, 1]. For every a > 0 and b ∈ (0, 1), there
exists α ∈ Γ such that

xβ ∈ Nxα(a, b)

for any β ≥ α. Indeed, let ε ∈ (0, 1] such that h(ε) > 1− b. Then, one can find α0 ∈ Γ such
that

λ(xα0 , ε) ≤ inf
α∈Γ

λ(xα, ε) + a.

Let β ≥ α0, then

inf
α∈Γ

λ(xα, ε) ≤ λ(xβ, ε) ≤ λ(xα0 , ε) ≤ inf
α∈Γ

λ(xα, ε) + a.

Then,
Fxβ ,xα0

(a) ≥ Fxβ ,xα0
(λ(xα0 , ε)− λ(xβ, ε)) ≥ h(ε) ≥ 1− b,

i.e. xβ ∈ Nxα0
(a, b).

Let (an, bn) such that an ↓ 0 and bn ↑ 1 as n → ∞. Then, one can find (αn) ⊂ Γ such that
for every β ≥ αn, we have

xβ ∈ Nxαn
(an, bn)

for every n ≥ 1. Since Γ is a directed set, one can assume that (αn) is increasing. The choice
of (αn) implies that (xαn) is a Cauchy sequence. Therefore its limit, say ω ∈ X, exists since
(X, F, t) is complete. Let us show that ω ≺ xα for any α ∈ Γ.
First, let us show that ω ≺ xαn for all n ≥ 1. Indeed, for every m ≥ n ≥ 1, we have

Fxαm ,xαn
(λ(xαn , ε)− λ(xαm , ε)) ≥ h(ε),

for every ε > 0. Using the weak-lower semi-continuity of λ, one can get

λ(ω, ε) ≤ inf
n≥1

λ(xαn , ε),

which implies
Fxαm ,xαn

(λ(xαn , ε)− λ(ω, ε)) ≥ h(ε),

for every ε > 0. Using the same idea, as in the proof of the Theorem 1, one can get

Fω,xαn
(λ(xαn , ε)− λ(ω, ε)) ≥ h(ε),
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for every n ≥ 1 and ε > 0. This clearly implies that for all n ≥ 1, we have

ω ≺ xαn .

Let α ∈ Γ, and assume that α ≤ αn for some n ≥ 1, then

ω ≺ xαn ≺ xα.

In order to complete the proof of our statement, let α ∈ Γ be such that αn ≤ α for every
n ≥ 1. By definition of αn, we have

xα ∈ Nxαn
(an, bn),

for any n ≥ 1, which implies that (xαn) converges to xα. The uniqueness of the limit implies
that

ω = xα.

This completes the proof of our claim and Zorn’s lemma will complete the proof of Theorem 3.

As a direct application of Theorem 3, one can get the following fixed point result.

Theorem 4. Let (X,F, t) be a complete Menger space, λ : X×(0, 1] → R+ be weak-lower
semi-continuous and h : (0, 1] → (0, 1] be a function satifying sup h(ε) = 1. Let T : X → X
be a map satisfying for every x ∈ X and ε ∈ (0, 1],

(∗ ∗ ∗) Fx,Tx(λ(x, ε)− λ(Tx, ε)) ≥ h(ε).

Then, T has a fixed point.

Proof. Let T be as assumed and ≺ be the order described in Theorem 3. Then clearly
we have for every x ∈ X,

T (x) ≺ x.

Let x0 ∈ X be a minimal element with respect to ≺. Then, clearly, x0 is a fixed point for T .

As a corollary, one can get the following result (see [5]).
Corollary 1. Let (X, F, t) be a complete Menger space. Then any contraction on X has

a unique fixed point.

Proof. We need just to show that the fixed point, which exists by Theorem 4, is unique.
Indeed, let T : X → X be a contraction. Then, there exists k ∈ (0, 1) such that for every
x, y ∈ X and ε > 0, we have

FTx,Ty(ε) ≥ Fx,y(
ε

k
).

Let x and y be two fixed points for T . Then,

Fx,y(ε) ≥ Fx,y(
ε

kn
),
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for every ε > 0 and n ≥ 1. Using the definition of Fx,y, we get

Fx,y(ε) ≥ sup
ζ>0

Fx,y(ζ) = 1.

Which clearly implies that x = y.

Remark. For both Theorem 2 and Theorem 4, one can get a common fixed point result
for any family of maps (Ti)i∈I , if all the maps Ti are dissipative with respect to the same
function λ (with the same function h ) in Theorem 2, and satisfying the inequality (∗ ∗ ∗) in
Theorem 4 for the same functions λ and h. Indeed, for both theorems, one can check that
any minimal element is a common fixed point.
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