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Abstract. According to modern geophysics, earthquakes mainly
occur in the places where tectonic plates interact.

Plate tectonics started with analyzing the simplest plate in-
teractions: heads on collisions and pull apart motions; such inter-
actions are the most common. Corresponding interaction zones
are often very seismically active; in addition to frequent small and
medium earthquakes, they host the most destructive earthquakes.

Not so common are oblique plate collisions (in which plates col-
lide at an oblique angle) and lateral motions. Earthquakes caused
by these non-canonical interactions are not so destructive, but they
can be even more dangerous that heads-on ones, because in heads-
on collisions, small earthquakes serve as a warning for a big one,
while in oblique and lateral collisions zones, earthquakes can occur
without warning.

To predict such un-warned earthquakes better, it is necessary
to look for traces of such quakes in the geological past. This neces-
sity raises an important question: currently, non-canonical collision
zones are relatively rare. Are we sure that they occured in the past
at all? Maybe, our search for such past quakes is futile?

To answer this question, in the present paper, we reformulate
it in topological and geometric terms. Our answer: it is impossible
to have only heads-on and pull-apart collisions, so there must have
been oblique and/or lateral collisions in each past geological epoch.
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1. EARTHQUAKES AND PLATE TECTONICS:
THE BASIC CONNECTION AND
THE FORMULATION OF OUR PROBLEM

According to modern geophysics (see, e.g., (McKenzie Parker
1967), (Cox 1973), (Plate 1980), (Cox 1986), and (Condie 1989)),
the surface of the Earth is divided into several tectonic plates that
move relative to each other, and earthquakes mainly occur in the
zones where two plates interact.

Plate tectonics started with analyzing the simplest plate in-
teractions: heads on collisions and pull apart movements, in which
both plate move in the direction orthogonal to their common
boundary. Such interactions are most common. Corresponding
interaction zones are often very seismiccally active; in addition to
frequent small and medium earthquakes, they host the most de-
structive earthquakes.

When plates collide in such “canonical” manner, they in-
evitably crash into each other, and earthquakes occur. In such
zones, it may be difficult to predict when exactly a large earth-
quake will occur, but the very seismicity of this zone is clear.

Not so common are oblique plate collisions (in which plates
collide at an oblique angle) and lateral motions. Their seismicity
is different from seismicity in canonical collision zones:

e On one hand, earthquakes caused by these non-canonical inter-
actions are usually not so destructive as earthquakes in heads
on collision zones.

e On the other hand, earthquakes in non-canonical collision
zones are much more difficult to predict than earthquakes in
head on collision zones: Indeed, a more complicated character
of the plate motion creates several different faults with dif-
ferent motions/orientations, and we can’t as easily tell which
faults are dangerous.

In view of this “more unpredictable” character of earthquakes in
non-canonical zones, it is necessary to analyze earthquakes in such



zones. Since these zones are not so common, to get a good statisti-
cal analysis, we must analyze not only current earthquakes in such
zones, but we must also take into consideration historic earthquakes
that occurred in these zones.

At present, there are three major non-canonical collision zones:
Alaska, New Zealand, and Indonesia (geophysicists believe that
there are probably more, but these three are well known). Since
the relative motion of tectonic plates changes over geological time,
it could also happen that in the geological past, collisions were non-
canonical in some other zones. It is therefore necessary to search
for such past zones in different parts of the globe.

In order to understand how much effort we need to invest in
such a search, we must first check whether such zones existed at
all. At present, there are, basically, three non-canonical collision
zones out of several dozens known major collision zones; if we take
into consideration minor collision zones, the percentage of non-
canonical zones stays approximately the same. Maybe, at some
point in the distant past, there were none? Maybe, in the past, all
collisions were heads-on, and our search is futile?

In other words, s it possible that all plate collisions are heads-
on?

In this paper, we will reformulate this question in geometric
terms, and show how to solve it.

2. REFORMULATION OF OUR PROBLEM
IN SIMPLIFIED TOPOLOGICAL TERMS,
AND SOLUTION OF THE CORRESPONDING
TOPOLOGICAL PROBLEM

Let us reformulate our geophysical question (is it possible that all
collisions are heads-on?) in topological terms.

At any given moment of time, the motion of different points
on the Earth surface can be described by assigning to each point x
a vector ¥(z) describing the velocity in the direction of the motion.
Inside the plate, the directions in which different points move either



coincide, or are at least close for nearby points. In other words, on
each plate, the dependency of ¥(x) on x is continuous. Interaction
points correspond to discontinuities of the corresponding vector

field v(z).

If all interactions are canonical (heads-on collisions or pull
apart motions), then the only possible discontinuity is going from
U to a vector that is collinear with ¢, but may go in a different
direction (i.e., to a vector A\, where the real number A can be
negative).

We can slightly simplify this picture if, instead of the actual
motion vectors 7, we consider unit vectors d = ¥/||7|| that describe
the direction of the motion (we assume that no points are immobile,
so 7(z) # 0 for all z). In terms of the resulting vector field d, the
only possible discontinuity is going from a vector d to the opposite
vector —d. In this case, although the vector field v(x) is, in general,
discontinuous, but the following related mapping is continuous: the
mapping [(z) of every point x from the spherical surface S (of the
Earth) to a line {(z) (in the tangent space) defined by d. In other
words, a discontinuous vector field cf(m) defines a continuous line
element field [(z) (for definitions and properties of line elements
fields, see, e.g., (Prasolov 1995), Chapter 6, pp. 56, 61, and 62).

So, the above geophysical question can be reformulated as a
following topological problem: Does there exist a continuous line
element field on a sphere? Our main result is as follows:

Definition. A linear element field on a smooth manifold V is a
mapping that maps every point x € V into a straight line in the
tangent space at x.

Comment. The notion of continuity can be naturally defined for
linear element fields.

PROPOSITION. No continuous line element fields are possible
on a 2-D sphere.

Comment. In geophysical terms, this result shows that it is im-
possible for all plates to have only canonical interactions (heads-on



collisions or pull apart motions), and therefore, that at any moment
of geophysical time, there was at least one non-canonical interac-
tion zone.

Idea of the proof. We will prove the Proposition by reduction
to a contradiction. Let us assume that [(x) is a continuous line
element field on a 2-D sphere.

The 2-D sphere S is a simply connected space in the sense that
its fundamental group (first homotopy group) w1 (S) is degenerate
(m1(S) = {1}). For exact definitions, see, e.g., Chapter VIII from
(McCarthy 1988); crudely speaking, this means that every contin-
uous closed path on a sphere can be continuously transformed into
a point (degenerate closed path).

On spaces with this property, from every continuous line ele-
ment field [(x), we can construct a continuous vector field ¢(x) such
that for every z, the vector ¢(x) # 0 defines the direction of the
line [(x). This construction is given in (Prasolov 1995), pp. 61 and
62: we pick an arbitrary point x, choose one of the two possible
directions defined by I(xg) as ¢(x¢), and then for every other point
x, choose a curve from zy and x and, along this curve, choose one
of the two unit vectors at each of the intermediate points so that
these vectors vary continuously. The simple connectedness prop-
erty guarantees that the resulting direction ¢(z) is independent on
the choice of a curve going from zq to x.

Now, we have a continuous non-zero vector field ¢(x) on a
sphere, and this is well known to be impossible; see, e.g., (Shashkin
1991), Chapter 13, p. 60.! This contradiction show that our ini-
tial assumption (that continuous line element fields are possible)
is inconsistent. Thus, there are no continuous line element fields.
Q.E.D.

1 This result is known as the Theorem on a Hedgehog: a hedge-
hog rolled into a ball has at least one needle that is “sticking out”
of that ball.



3. GEOMETRIC APPROACH: AN OPEN PROBLEM

In the above topological formalization, we formalized “canonical
interactions” as plate interactions in which the directions of the
motion vectors on the two sides of the collision zone are either
identical, or exactly opposite to each other. From the geophysical
viewpoint, there are two reasons why this is an oversimplicification:

e First, we defined heads-on collision as a one in which the angle
between the motion vectors of two colliding plates is ezxactly
180°. In reality, if this angle is 179° or even 170°, this is, for
all geophysical purposes, a heads-on collision.

e Second, from the geophysical viewpoint, what matters most is
not so much the absolute motion of the two plates, but their
relative motion. If the relative velocity of the two plates is
orthogonal (or almost orthogonal) to their common boundary,
then the corresponding interaction is almost canonical.

So, it is natural to ask the following question:

e in this paper, we have shown that it is impossible for every
plate interaction to be canonical;

e is it possible for every plate interaction to be “almost canoni-
cal” (in the above sense)?

This question can be reformulated in purely geometric terms: Is it
possible to have the following geometric structure on a sphere:

e The surface of the sphere is divided into several polygons (i.e.,
areas bounded by arcs of large circles); these polygons repre-
sent different tectonic plates.

e Each polygon is moving as a solid body, i.e., a vector v(z) is
assigned to each point z, so that when each point slides along
this vector, the distance between two points from the same
polygon polygon stay the same.

e On every edge (border segment between two polygons), the
relative motion, i.e., the difference between the two vectors
that describe motion of two border polygons, is non-zero and
“almost orthogonal” to the border in the sense that the angle
a between the relative motion vector and the boundary is close
to 90° (i.e., |a — 90| < A for some small A > 0).



Is such a configuration possible for all A? If not, what is the
smallest A for which such a configuration is possible?

CONCLUSION

Our result is a somewhat unexpected application of abstract mathe-
matics (topology) to a real-life (geophysical) problem. Even though
our current result may not answer the most urgent problems of geo-
physics, it is an indication that further topological and especially
geombinatoric analysis can lead to more serious applications.
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