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1. Introduction

The purpose of this paper is to give an outline of the fixed point theory for asymptotic pointwise contractions defined
on some subsets of modular function spaces which are natural generalizations of both function and sequence variants of
many important, from application perspective, spaces like Lebesgue, Kothe, Orlicz, Musielak–Orlicz, Lorentz, Orlicz–Lorentz,
Calderon–Lozanovskii spaces and many others. The importance for applications consists in the richness of the structure
of modular function spaces, that – besides being Banach spaces (or F-spaces in more general settings) – are equipped
with modular equivalents of norm or metric notions. They are also equipped with almost everywhere convergence and
convergence in submeasure. In many cases, particularly in applications to integral operators, approximation and fixed
point theory, modular type conditions are much more natural as modular type assumptions can be more easily verified
than their metric or norm counterparts. There are also important results that can be proved only using the apparatus of
modular function spaces. From this perspective, the fixed point theory in modular function spaces should be considered as
complementary to the fixed point theory in normed and metric spaces.
The theory of contractions and nonexpansive mappings defined on convex subsets of Banach spaces has been well

developed since the 1960s [1–4], and generalized to other metric spaces [5–7], and modular function spaces [8,9]. The
corresponding fixed point results were then extended to larger classes of mappings like asymptotic mappings [10,11],
pointwise contractions [12] and asymptotic pointwise contractions and nonexpansive mappings [13–15].
Themost common approach in the Banach space fixed point theory is to assume aweak compactness of the set on which

a nonlinear mapping is defined, or alternatively to assume reflexivity of the Banach space, which in itself – via the Milman
Theorem – guarantees the weak compactness of the bounded sets. Questions may be asked whether the theory of modular
function spaces provides similarly, general methods for the consideration of fixed point properties. We believe that this
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paper demonstrates the existence of such a general theory. In our view, the most important, from the fixed point theory
viewpoint, characteristics of reflexive spaces sits in the following purely geometric characterization of reflexive spaces:
every nonincreasing sequence of nonempty, convex, bounded sets has a nonempty intersection. In the context of modular
function spaceswe follow [9] and call this property (R). In the theory developed in this paper, the property (R) plays a central
role as a modular equivalent of the Banach space reflexivity. The property (R) also aligns well to the metric equivalents of
reflexivity defined by the notions of compact convexity structures, [15].
Another thread of thought present in this paper is to use a modular version of the Opial property which together

with a compactness in the sense of convergence almost everywhere gives us existence of a fixed point for pointwise
contractions. It is worthwhile mentioning that the modular version of the Opial property is satisfied in a large class of
modular function spaces (including all Orlicz and Musielak–Orlicz spaces) while the Banach space, weak convergence
version of Opial condition is failed even in cases like Lp spaces for 1 < p <∞, p 6= 2, [16,17].
The paper is organized as follows:

(a) Section 2 provides necessary preliminary material and establishes the terminology and key notation conventions.
(b) Section 3 presents fixed point theorems for pointwise contractions in modular function spaces. Theorem 3.1 assumes
uniform continuity of ρ. A more general assumption on ρ of the Strong Opial property gives a fixed point result
for pointwise contractions defined in sets that are compact in the sense of the convergence almost everywhere
(Theorem 3.2).

(c) Section 4 deals with asymptotic pointwise contractions in modular function spaces. Again, we prove first a fixed point
theorem for uniform continuous ρ (Theorem 4.1). Theorem 4.2 provides the fixed point result for asymptotic pointwise
contractions defined in sets that are compact in the sense of the convergence almost everywhere under the Strong Opial
property assumption on ρ.

2. Preliminaries

Let Ω be a nonempty set and Σ be a nontrivial σ -algebra of subsets of Ω . Let P be a δ-ring of subsets of Ω , such that
E ∩ A ∈ P for any E ∈ P and A ∈ Σ . Let us assume that there exists an increasing sequence of sets Kn ∈ P such
that Ω =

⋃
Kn. By E we denote the linear space of all simple functions with supports from P . By M∞ we will denote

the space of all extended measurable functions, i.e. all functions f : Ω → [−∞,∞] such that there exists a sequence
{gn} ⊂ E, |gn| ≤ |f | and gn(ω)→ f (ω) for all ω ∈ Ω . By 1A we denote the characteristic function of the set A.

Definition 2.1. Let ρ : M∞ → [0,∞] be a convex and even function. We say that ρ is a regular convex function pseudo-
modular if:

(i) ρ(0) = 0;
(ii) ρ is monotone, i.e. |f (ω)| ≤ |g(ω)| for all ω ∈ Ω implies ρ(f ) ≤ ρ(g), where f , g ∈M∞;
(iii) ρ is orthogonally subadditive, i.e. ρ(f 1A∪ B) ≤ ρ(f 1A)+ ρ(f 1B) for any A, B ∈ Σ such that A ∩ B 6= ∅, f ∈M;
(iv) ρ has the Fatou property, i.e. |fn(ω)| ↑ |f (ω)| for all ω ∈ Ω implies ρ(fn) ↑ ρ(f ), where f ∈M∞;
(v) ρ is order continuous in E , i.e. gn ∈ E and |gn(ω)| ↓ 0 implies ρ(gn) ↓ 0.

Similarly as in the case of measure spaces, we say that a set A ∈ Σ is ρ-null if ρ(g1A) = 0 for every g ∈ E . We say that a
property holds ρ-almost everywhere if the exceptional set is ρ-null. As usual we identify any pair of measurable sets whose
symmetric difference is ρ-null as well as any pair of measurable functions differing only on a ρ-null set. With this in mind
we define

M(Ω,Σ,P , ρ) = {f ∈M∞; |f (ω)| <∞ρ-a.e}, (2.1)

where each f ∈M(Ω,Σ,P , ρ) is actually an equivalence class of functions equal ρ-a.e. rather than an individual function.
Where no confusion exists we will writeM instead ofM(Ω,Σ,P , ρ).

Definition 2.2. Let ρ be a regular function pseudomodular.

(1) We say that ρ is a regular convex function semimodular if ρ(αf ) = 0 for every α > 0 implies f = 0ρ-a.e.;
(2) We say that ρ is a regular convex function modular if ρ(f ) = 0 implies f = 0ρ-a.e.

The class of all nonzero regular convex function modulars defined onΩ will be denoted by<.

Let us denote ρ(f , E) = ρ(f 1E) for f ∈ M, E ∈ Σ . It is easy to prove that ρ(f , E) is a function pseudomodular in the
sense of Def. 2.1.1 in [18] (more precisely, it is a function pseudomodular with the Fatou property). Therefore, we can use all
results of the standard theory of modular function spaces as per the framework defined by Kozlowski in [18–20], see also
Musielak [21].

Remark 2.1. We limit ourselves to convex function modulars in this paper. However, omitting convexity in Definition 2.1
or replacing it by s-convexity would lead to the definition of nonconvex or s-convex regular function pseudomodulars,
semimodulars and modulars as in [18].



M.A. Khamsi, W.M. Kozlowski / Nonlinear Analysis 73 (2010) 2957–2967 2959

Definition 2.3 ([19,20,18]). Let ρ be a convex function modular.

(a) A modular function space is the vector space Lρ(Ω,Σ), or briefly Lρ , defined by

Lρ = {f ∈M; ρ(λf )→ 0 as λ→ 0}.

(b) The following formula defines a norm in Lρ (frequently called Luxemurg norm):

‖f ‖ρ = inf{α > 0; ρ(f /α) ≤ 1}.

In the following theorem we recall some of the properties of modular function spaces that will be used later on in this
paper.

Theorem 2.1 ([19,20,18]). Let ρ ∈ <.

(1) Lρ, ‖f ‖ρ is complete and the norm ‖ · ‖ρ is monotone w.r.t. the natural order inM.
(2) ‖fn‖ρ → 0 if and only if ρ(αfn)→ 0 for every α > 0.
(3) If ρ(αfn)→ 0 for an α > 0 then there exists a subsequence {gn} of {fn} such that gn → 0ρ-a.e.
(4) If {fn} converges uniformly to f on a set E ∈ P then ρ(α(fn − f ), E)→ 0 for every α > 0.
(5) Let fn → f ρ-a.e. There exists a nondecreasing sequence of sets Hk ∈ P such that Hk ↑ Ω and {fn} converges uniformly to f
on every Hk (Egoroff Theorem).

(6) ρ(f ) ≤ lim inf ρ(fn) whenever fn → f ρ-a.e. (Note: this property is equivalent to the Fatou Property.)
(7) Defining L0ρ = {f ∈ Lρ; ρ(f , ·) is order continuous} and Eρ = {f ∈ Lρ; λf ∈ L

0
ρ for every λ > 0} we have:

(a) Lρ ⊃ L0ρ ⊃ Eρ ,
(b) Eρ has the Lebesgue property, i.e. ρ(αf ,Dk)→ 0 for α > 0, f ∈ Eρ and Dk ↓ ∅.
(c) Eρ is the closure of E (in the sense of ‖ · ‖ρ).

The following definition plays an important role in the theory of modular function spaces.

Definition 2.4. Let ρ ∈ <. We say that ρ has the∆2-property if supn ρ(2fn,Dk)→ 0 whenever Dk ↓ ∅ and supn ρ(fn,Dk)
→ 0.

Theorem 2.2. Let ρ ∈ <. The following conditions are equivalent:

(a) ρ has∆2,
(b) L0ρ is a linear subspace of Lρ ,
(c) Lρ = L0ρ = Eρ ,
(d) if ρ(fn)→ 0 then ρ(2fn)→ 0,
(e) if ρ(αfn)→ 0 for an α > 0 then ‖fn‖ρ → 0, i.e. the modular convergence is equivalent to the norm convergence.

We will also use another type of convergence which is situated between norm and modular convergence. It is defined,
among other important terms, in the following definition.

Definition 2.5. Let ρ ∈ <.

(a) We say that {fn} is ρ-convergent to f and write fn → 0 (ρ) if and only if ρ(fn − f )→ 0.
(b) A sequence {fn}where fn ∈ Lρ is called ρ-Cauchy if ρ(fn − fm)→ 0 as n,m→∞.
(c) A set C ⊂ Lρ is called ρ-closed if for any sequence {fn} in C , the convergence fn → f (ρ) implies that f belongs to C .
(d) A set C ⊂ Lρ is called ρ-bounded if sup{ρ(f − g); f ∈ C, g ∈ C} <∞.
(e) A set C ⊂ Lρ is called ρ-a.e. closed if for any {fn} in C which ρ-a.e. converges to some f , then we must have f ∈ C;
(f) A set C ⊂ Lρ is called ρ-a.e. compact if for any {fn} in C , there exists a subsequence {fnk}which ρ-a.e. converges to some
f ∈ C .

(g) Let f ∈ Lρ and C ⊂ Lρ . The ρ-distance between f and C is defined as

dρ(f , C) = inf{ρ(f − g); g ∈ C}.

Let us note that ρ-convergence does not necessarily imply ρ-Cauchy condition. Also, fn → f does not imply in general
λfn → λf , λ > 1. Using Theorem 2.1 it is not difficult to prove the following

Proposition 2.1. Let ρ ∈ <.

(i) Lρ is ρ-complete,
(ii) ρ-balls Bρ(x, r) = {y ∈ Lρ; ρ(x− y) ≤ r} are ρ-closed and ρ-a.e. closed.

Let us give the modular definitions of pointwise contractions, asymptotic pointwise contractions and asymptotic
pointwise nonexpansive mappings. The definitions are straightforward generalizations of their norm and metric
equivalents, [10,13–15].
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Definition 2.6. Let ρ ∈ < and let C ⊂ Lρ be nonempty and ρ-closed. Amapping T : C → C is called a pointwise contraction
if there exists α : C → [0, 1) such that

ρ(T (f )− T (g)) ≤ α(f )ρ(f − g) for any f , g ∈ C, n ≥ 1.

Definition 2.7. Let ρ ∈ < and let C ⊂ Lρ be nonempty and ρ-closed. A mapping T : C → C is called an asymptotic
pointwise mapping if there exists a sequence of mappings αn : C → [0, 1] such that

ρ(T n(f )− T n(g)) ≤ αn(f )ρ(f − g) for any f , g ∈ C .

(i) If {αn} converges pointwise to α : C → [0, 1), then T is called asymptotic pointwise contraction.
(ii) If lim supn→∞ αn(f ) ≤ 1 for any f ∈ C , then T is called asymptotic pointwise nonexpansive.
(iii) If lim supn→∞ αn(f ) ≤ k for any f ∈ C with 0 < k < 1, then T is called strongly asymptotic pointwise contraction.

The following result will be useful throughout this work.

Theorem 2.3. Let us assume that ρ ∈ <. Let K ⊂ Lρ be nonempty, ρ-closed and ρ-bounded. Let T : K → K be a pointwise
ρ-contraction or asymptotic pointwise ρ-contraction. Then T has at most one fixed point x0 ∈ K . Moreover if x0 is a fixed point
of T , then the orbit {T n(x)} converges to x0 for any x ∈ K .

Proof. Since pointwise ρ-contraction implies asymptotic pointwise ρ-contraction, then we only focus on asymptotic
pointwise ρ-contraction mappings. Indeed let T be an asymptotic pointwise ρ-contraction and u, v ∈ C are fixed point
of T . Then we have

ρ(T n(u), T n(v)) = ρ(u, v) ≤ αn(u)ρ(u, v),

for any n ≥ 1. If we let n→∞, we will get

ρ(u, v) ≤ α(u)ρ(u, v).

Since α(u) < 1, we conclude that ρ(u, v) = 0 or u = v. This proves the first part of Theorem 2.3. Next let x0 be a fixed point
of T and x ∈ C . Let us prove that {T n(x)} converges to x0. Indeed we have

ρ(T n+m(x), T n(x0)) = ρ(T n+m(x), x0) ≤ αn(x0)ρ(Tm(x), x0),

for any n,m ≥ 1. Hence

lim sup
m→∞

ρ(T n+m(x), x0) ≤ lim sup
m→∞

αn(x0)ρ(Tm(x), x0).

Since lim supm→∞ ρ(T n+m(x), x0) = lim supm→∞ ρ(Tm(x), x0), we get

lim sup
m→∞

ρ(Tm(x), x0) ≤ αn(x0) lim sup
m→∞

ρ(Tm(x), x0),

for any n ≥ 1. If we let n→∞, we obtain

lim sup
m→∞

ρ(Tm(x), x0) ≤ α(x0) lim sup
m→∞

ρ(Tm(x), x0).

Since α(x0) < 1, we get

lim sup
m→∞

ρ(Tm(x), x0) = 0.

Clearly we can derive the same equality where lim sup is replaced by lim inf which implies the desired conclusion:

lim
m→∞

ρ(Tm(x), x0) = 0. �

3. Pointwise contractions in modular function spaces

To begin with let us recall the following standard definitions.

Definition 3.1. We will say that the function modular ρ is uniformly continuous if for every ε > 0 and L > 0 there exists
δ > 0 such that

|ρ(g)− ρ(h+ g)| ≤ ε if ρ(h) ≤ δ and ρ(g) ≤ L. (3.1)
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Definition 3.2. A function λ : C → [0,∞], where C ⊂ Lρ is nonempty and ρ-closed, is called ρ-lower semicontinuous if
for any α > 0, the set Cα = {f ∈ C; λ(f ) ≤ α} is ρ-closed.

It can be proved that ρ-lower semicontinuity is equivalent to the condition

λ(f ) ≤ lim inf
n→∞

λ(fn) provided f , fn ∈ C, and ρ(f − fn)→ 0.

The following lemma shows how uniform continuity of the modular ρ is related to the ρ-lower semicontinuity of the
associated limit of a sequence of ρ-radii being modular analogue of the Chebyshev radii in metric spaces.

Definition 3.3. Let x ∈ Lρ and let C ⊂ Lρ be nonempty. Then by the ρ-Chebyshev radius of C with respect to x ∈ Lρ we
understand

rρ(x, C) = sup{ρ(x− y); y ∈ C}.

Lemma 3.1. Let ρ ∈ < be uniformly continuous. Let K ⊂ Lρ be nonempty, convex, ρ-closed and ρ-bounded. Let {Kn} be a
nonincreasing sequence of nonempty, convex, ρ-closed subsets of K with a nonempty intersection, denoted by K∞. Then the
function r defined as r(x) = infn≥0 rρ(x, Kn) is ρ-lower semicontinuous in K∞.

Proof. Let α > 0, denote Cα = {x ∈ K∞; r(x) ≤ α}. We need to prove that Cα is ρ-closed. Let a sequence {xk} ⊂ Cα and
ρ(x0 − xk)→ 0. We need to prove that x0 ∈ Cα .
To every n ≥ 1 there exists yn ∈ Kn such that

rρ(x0, Kn)−
1
n
≤ ρ(x0 − yn) ≤ rρ(x0, Kn).

Since rρ(x0, Kn)→ r(x0) as n→∞, it follows that

r(x0) = lim
n→∞

ρ(x0 − yn). (3.2)

By ρ-boundedness of K , there exists L = supn ρ(x0 − yn) <∞. Let us fix an arbitrary ε > 0. By uniform continuity of ρ
there exists δ > 0 such that

|ρ(g)− ρ(h+ g)| ≤ ε if ρ(h) ≤ δ and ρ(g) ≤ L. (3.3)

Since ρ(x0 − xk)→ 0, there exists p ≥ 1 such that ρ(x0 − xk) ≤ δ for k ≥ p. Using (3.3) with h = x0 − xp and g = yn − x0
we have

|ρ(yn − x0)− ρ(yn − xp)| ≤ ε for every n ≥ 1. (3.4)

Since

ρ(yn − xp) ≤ sup{ρ(y− xp); y ∈ Kn} = rρ(xp, Kn),

we get

ρ(yn − x0) ≤ rρ(xp, Kn)+ ε,

for any n ≥ 1. If we let n→∞, we obtain

r(x0) ≤ r(xp)+ ε ≤ α + ε.

Since ε was arbitrary, we deduce finally that r(x0) ≤ α, i.e. x0 ∈ Cα as claimed. �

Remark 3.1. Let us mention that uniform continuity holds for a large class of function modulars. For instance, it can be
proved that in Orlicz spaces over a finite atomless measure [22] or in sequence Orlicz spaces [23] the uniform continuity of
the Orlicz modular is equivalent to the∆2-type condition.

The following property plays in the theory of modular function spaces a role similar to the reflexivity in Banach spaces
(see e.g. [9]).

Definition 3.4. We say that Lρ has property (R) if and only if every nonincreasing sequence {Cn} of nonempty, ρ-bounded,
ρ-closed, convex subsets of Lρ has nonempty intersection.

In [9] examples of modular function spaces which posses property (R) are given.
The following result plays an important role in the proof of the Fixed Point Theorem 3.1.
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Lemma 3.2. Let us assume that ρ ∈ < has property (R). Let K ⊂ Lρ be nonempty, convex, ρ-closed and ρ-bounded. If
ϕ : K → [0,∞) is a ρ-lower semicontinuous convex function, then there exists x0 ∈ K such that

ϕ(x0) = inf{ϕ(x); x ∈ K}.

Proof. Letm = inf{ϕ(x); x ∈ K}. The assumptions on ϕ implym <∞. For any n ≥ 1, set

Kn =
{
x ∈ K ;ϕ(x) ≤ m+

1
n

}
.

Clearly Kn is not empty and is a convex set because ϕ is a convex function. Also, Kn is ρ-closed since ϕ is ρ-lower
semicontinuous. Since ρ satisfies property (R), then

K∞ =
⋂
n≥1

Kn 6= ∅.

For x0 ∈ K∞ there holds

ϕ(x0) = inf{ϕ(x); x ∈ K},

as claimed. �

We are ready now to prove our fixed point theorem which assumes the uniform continuity of the function modular ρ.

Theorem 3.1. Let us assume that ρ ∈ < is uniformly continuous and has property (R). Let K ⊂ Lρ be nonempty, convex,
ρ-closed and ρ-bounded. Let T : K → K be a pointwise ρ-contraction. Then T has a unique fixed point x0 ∈ K. Moreover the
orbit {T n(x)} converges to x0 for any x ∈ K .

Proof. Using Theorem 2.3, it is enough to show that T has a fixed point. For any subset A of Lρ , denote by convρ(A) the
intersection of all ρ closed convex subsets of Lρ which contains A. Set K0 = K , and

Kn+1 = convρ(T (Kn)), for any n ≥ 0.

Since K is T -invariant, then we have Kn+1 ⊂ Kn, for any n ≥ 0. Since ρ satisfies the property (R), then

K∞ =
⋂
Kn 6= ∅. (3.5)

Clearly we have T (K∞) ⊂ K∞. We claim that K∞ is reduced to one point. Indeed for any x ∈ K∞, note that

rρ(x, Kn+1) ≤ rρ(x, Kn),

for any n ≥ 0, where rρ(x, C) = sup{ρ(x− y); y ∈ C}. Set

r(x) = inf
n≥0
rρ(x, Kn) = lim

n→∞
rρ(x, Kn).

Since Kn ⊂ Bρ(x, rρ(x, Kn)), we get K∞ ⊂ Bρ(x, rρ(x, Kn)), for any n ≥ 0. Hence

rρ(x, K∞) ≤ r(x). (3.6)

By Lemma 3.1 we know that r(x) is ρ-lower semicontinuous. Lemma 3.2 implies then that the infimum of r(x) on K∞ is
attained at a point x0 ∈ K∞, i.e. r(x0) = inf{r(x); x ∈ K∞}.
Let us prove now that

r(T (x0)) ≤ α(x0)r(x0). (3.7)

Indeed we have

Kn ⊂ Bρ(x0, rρ(x0, Kn)),

for any n ≥ 0. Since T is a ρ-pointwise contraction, it follows then that

T (Kn) ⊂ Bρ(T (x0), α(x0)rρ(x0, Kn)).

Since ρ is convex and ρ-balls are ρ-closed, it follows that

convρ(T (Kn)) ⊂ Bρ(T (x0), α(x0)rρ(x0, Kn)),

which implies

Kn+1 ⊂ Bρ(T (x0), α(x0)rρ(x0, Kn)).
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Hence rρ(T (x0), Kn+1) ≤ α(x0) rρ(x0, Kn), which implies

r(T (x0)) ≤ α(x0)r(x0) (3.8)

which proves (3.7).
Since α(x0) < 1 and T (x0) ∈ X∞, we get r(x0) = inf{r(x); x ∈ K∞}must be equal to zero. In view of (3.6), this forces the

following

rρ(x0, K∞) = 0.

Because modulars are equal zero only at zero, we get K∞ = {x0}. Since K∞ is T -invariant, x0 is a fixed point of T . �

Using ρ-a.e. Strong Opial property of the function modular we can prove now the next fixed point theorem which does
not assume uniform continuity of ρ.

Definition 3.5. We will say that Lρ satisfies the ρ-a.e. Strong Opial property (or shortly SO-Property) if for every {fn} ∈ Lρ
which is ρ-a.e. convergent to 0 such that there exists a β > 1 for which

sup{ρ(βfn)} <∞, (3.9)

the following equality holds for any g ∈ Eρ

lim inf
n→∞

ρ(fn + g) = lim inf
n→∞

ρ(fn)+ ρ(g). (3.10)

Remark 3.2. Note that the ρ-a.e. Strong Opial property implies ρ-a.e. Opial property (see the paper by Khamsi [24] for
definition of the Opial property in modular function spaces).

Remark 3.3. Also, note that, in virtue of Theorem 2.1 in [24], every convex, orthogonally additive function modular ρ
has the ρ-a.e. Strong Opial property. Let us recall that ρ is called orthogonally additive if ρ(f , A ∪ B) = ρ(f , A) +
ρ(f , B)whenever A ∩ B = ∅.

Remark 3.4. The ρ-a.e. Strong Opial property can be also defined and proved for nonconvex regular function modulars,
e.g. for some s-convex modulars (s < 1) like Ls for 0 < s < 1, [24,17].

We start with the following lemmawhich explains the role the ρ-a.e. Strong Opial property plays in proving existence of
minimal elements for some real functions being a pointwise limit or lim sup of a sequence of functions defined in subsets of
Lρ . Typically, wewould use this technique to types or limits of Chebyshev radii. Thisminimization argumentwill be essential
in the proof of the fixed point theorems using the ρ-a.e. Strong Opial property.

Lemma 3.3. Let ρ ∈ <. Assume that Lρ has the ρ-a.e. Strong Opial property. Let K ⊂ Eρ be a nonempty, ρ-a.e. compact subset
such that there exists β > 1 such that δρ(βK) = sup{ρ(β(x − y)); x, y ∈ K} < ∞. Let C ⊂ K be a nonempty ρ-a.e. closed
subset. For any n ≥ 1, let λn : C → [0,∞) be such that for any y ∈ C, there exists a sequence {yn} ⊂ K such that, for every
n ≥ 1, there holds

λn(y)−
1
n
≤ ρ(y− yn),

and ρ(x− yn) ≤ λn(x), for every x ∈ C and every n ≥ 1. Let λ(x) = lim supn→∞ λn(x), for any x ∈ C. Then there exists x0 ∈ C
at which λ attains infimum, i.e.

λ(x0) = inf{λ(x); x ∈ C}.

Proof. First note that inf{λ(x); x ∈ C} ≤ δρ(K) ≤ δρ(βK) <∞. Hence there exists {xn} ⊂ C such that

λ0 = lim
n→∞

λ(xn) = inf{λ(x); x ∈ C}.

Without loss of any generality wemay assume {xn}ρ-a.e. converges to some x0 ∈ C since K is ρ-a.e. compact and C is ρ-a.e.
closed. By the hypothesis, for any n ≥ 1, there exists yn ∈ K such that

ρ(x0 − yn) ≥ λn(x0)−
1
n
. (3.11)

Without loss of generality we can assume that

λ(x0) = lim
n→∞

λn(x0). (3.12)
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There exists a subsequence {yϕ(n)} of {yn} which ρ-a.e. converges to some y0 ∈ K . By the ρ-a.e. Strong Opial property we
get

lim inf
n→∞

ρ(yϕ(n) − xm) = lim inf
n→∞

ρ(yϕ(n) − y0)+ ρ(y0 − xm), (3.13)

for anym ≥ 0. Since

lim inf
n→∞

ρ(yϕ(n) − xm) ≤ lim sup
n→∞

ρ(yn − xm) ≤ lim sup
n→∞

λn(xm) = λ(xm) (3.14)

we conclude via (3.13) that

lim inf
m→∞

λ(xm) ≥ lim inf
n→∞

ρ(yϕ(n) − y0)+ lim inf
m→∞

ρ(y0 − xm). (3.15)

Using the ρ-a.e. Strong Opial property again, to {xm − x0} this time, we get

lim inf
m→∞

ρ(y0 − xm) = lim inf
m→∞

ρ(xm − x0)+ ρ(x0 − y0) (3.16)

which implies

lim inf
m→∞

λ(xm) ≥ lim inf
n→∞

ρ(yϕ(n) − y0)+ lim inf
m→∞

ρ(xm − x0)+ ρ(x0 − y0). (3.17)

Hence

lim inf
m→∞

λ(xm) ≥ lim inf
n→∞

ρ(yϕ(n) − x0)+ lim inf
m→∞

ρ(xm − x0), (3.18)

which implies

lim inf
m→∞

λ(xm) ≥ lim inf
n→∞

ρ(yϕ(n) − x0). (3.19)

Using (3.11) we get

lim inf
n→∞

ρ(yϕ(n) − x0) ≥ lim inf
n→∞

λϕ(n)(x0) = λ(x0),

where the last equality follows from (3.12). This combined with (3.19) yields λ0 ≥ λ(x0). By the definition of λ0 we have
then

λ0 = λ(x0) = inf{λ(x); x ∈ C} (3.20)

as claimed. �

Theorem 3.2. Let ρ ∈ <. Assume that Lρ has the ρ-a.e. Strong Opial property. Let K ⊂ Eρ be a nonempty, ρ-a.e. compact
convex subset such that there exists β > 1 such that δρ(βK) = sup{ρ(β(x − y)); x, y ∈ K} < ∞. Then any T : K → K
pointwise ρ-contraction has a unique fixed point x0 ∈ K. Moreover the orbit {T n(x)} converges to x0, for any x ∈ K.

Proof. Using Theorem 2.3, it is enough to show that T has a fixed point. For any subset A of Lρ , denote by convρ-a.e.(A) the
intersection of all ρ-a.e. closed convex subsets of Lρ which contains A. The assumptions on K imply that K is ρ-bounded.
Set K0 = K , and

Kn+1 = convρ-a.e.(T (Kn)), for any n ≥ 0.

Since K is T invariant, then we have Kn+1 ⊂ Kn, for any n ≥ 0. Since K is ρ-a.e. compact, then

K∞ =
⋂
Kn 6= ∅. (3.21)

Clearly we have T (K∞) ⊂ K∞. We claim that K∞ is reduced to one point. Indeed for any x ∈ K∞, note that

rρ(x, Kn+1) ≤ rρ(x, Kn),

for any n ≥ 0, where rρ(x, C) = sup{ρ(x− y); y ∈ C}, because the balls are ρ-a.e. closed by the Fatou property. Set

r(x) = inf
n≥0
rρ(x, Kn) = lim

n→∞
rρ(x, Kn).

Since Kn ⊂ Bρ(x, rρ(x, Kn)), we get K∞ ⊂ Bρ(x, rρ(x, Kn)), for any n ≥ 0. Hence

rρ(x, K∞) ≤ r(x). (3.22)

The existence of x0 ∈ K∞ such that r(x0) = inf{r(x); x ∈ K∞} follows from Lemma 3.3 applied with λ(x) = r(x), C = K∞,
λn(x) = rρ(x, Kn). Note for a given y ∈ K∞ there exists yn ∈ Kn such that

λn(y)−
1
n
= rρ(y, Kn)−

1
n
≤ ρ(y− yn).
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Therefore the assumptions of Lemma 3.3 are satisfied. Let us prove now that

r(T (x0)) ≤ α(x0)r(x0). (3.23)

Indeed we have

Kn ⊂ Bρ(x0, rρ(x0, Kn)),

for any n ≥ 0. Since T is ρ-pointwise contraction, it follows then that

T (Kn) ⊂ Bρ(T (x0), α(x0)rρ(x0, Kn)).

Since ρ is convex and has the Fatou property, it follows that

convρ-a.e.(T (Kn)) ⊂ Bρ(T (x0), α(x0)rρ(x0, Kn)),

which implies

Kn+1 ⊂ Bρ(T (x0), α(x0)rρ(x0, Kn)).

Hence rρ(T (x0), Kn+1) ≤ α(x0) rρ(x0, Kn), which implies

r(T (x0)) ≤ α(x0)r(x0) (3.24)

which proves (3.23).
Since α(x0) < 1 and T (x0) ∈ X∞, we get r(x0) = inf{r(x); x ∈ K∞}must be equal to zero. In view of (3.22), this forces

the following

rρ(x0, K∞) = 0.

Because modulars are equal zero only at zero, we get K∞ = {x0}. Since K∞ is T -invariant, x0 is a fixed point of T . �

Please note that combining Theorem 3.2 with Remark 3.3 we have the next result.

Theorem 3.3. Let Lρ be a modular function space where ρ ∈ < is orthogonally additive. Let K ⊂ Eρ be a nonempty, ρ-a.e.
compact convex subset such that δρ(βK) = sup{ρ(β(x− y)); x, y ∈ K} <∞, for some β > 1. Then any T : K → K pointwise
ρ-contraction has a unique fixed point x0 ∈ K. Moreover the orbit {T n(x)} converges to x0, for any x ∈ M.

4. Asymptotic pointwise contractions in modular function spaces

We begin this section by introducing a notion of a ρ-type.

Definition 4.1. Let K ⊂ Lρ be convex and ρ-bounded.
(1) A function τ : K → [0,∞] is called a (ρ)-type if there exists a sequence {ym} of elements of K such that for any z ∈ K
there holds

τ(z) = lim sup
m→∞

ρ(ym − z).

(2) A sequence {gn} is called a minimizing sequence of τ if

lim
n→∞

τ(gn) = inf{τ(f ); f ∈ C}.

Note that τ is convex provided ρ is convex. We will use types for proving an existence of fixed points for asymptotic
pointwise ρ-contractions. We will start with the following easy but important result.

Lemma 4.1. Let ρ ∈ < be uniformly continuous. Let K ⊂ Lρ be nonempty, convex, ρ-closed and ρ-bounded. Then any ρ-type
τ : K → [0,∞] is ρ-lower semicontinuous in K .

Proof. Let τ be a ρ-type. Let α > 0, denote Cα = {x ∈ K ; τ(x) ≤ α}. We need to prove that Cα is ρ-closed. Without loss
of generality we can assume that Cα is nonempty. Let a sequence {xk} ⊂ Cα be such that ρ(x0 − xk)→ 0 with x0 ∈ K . We
need to prove that x0 ∈ Cα , i.e. that τ(x0) ≤ α. Let {ym} be a sequence that defines τ . By ρ-boundedness of K , there exists
L = supm ρ(x0 − ym) <∞. Let us fix an arbitrary ε > 0. By uniform continuity of ρ there exists δ > 0 such that

|ρ(g)− ρ(h+ g)| ≤ ε if ρ(h) ≤ δ and ρ(g) ≤ L. (4.1)

Since ρ(x0 − xk)→ 0, there exists p ≥ 1 such that ρ(x0 − xk) ≤ δ for k ≥ p. Using (4.1) with h = x0 − xp and g = yn − x0
we have

|ρ(yn − x0)− ρ(yn − xp)| ≤ ε for every n ≥ 1. (4.2)

By the definition of τ , we have then that τ(x0) ≤ α + 2ε because xp ∈ Cα . Since ε was chosen arbitrarily we have finally
τ(x0) ≤ α as claimed. �
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We will use Lemma 4.1 in the proof of the following fixed point theorem.

Theorem 4.1. Let us assume that ρ ∈ < is uniformly continuous and has property (R). Let K ⊂ Lρ be nonempty, convex,ρ-closed
and ρ-bounded. Let T : K → K be an asymptotic pointwise ρ-contraction. Then T has a unique fixed point x0 ∈ K. Moreover the
orbit {T n(x)} converges to x0 for any x ∈ K .

Proof. Using Theorem 2.3, it is enough to show that T has a fixed point. Indeed let us fix x ∈ K and define the ρ-type by

τ(u) = lim sup
n→∞

ρ(T n(x)− u), (4.3)

for u ∈ K . By Lemma 4.1 the ρ-type τ is ρ-lower semicontinuous in K . By Lemma 3.2 then there exists x0 ∈ K such that

τ(x0) = inf{τ(x); x ∈ K}. (4.4)

Let us prove that τ(x0) = 0. Indeed, for any n,m ≥ 1 we have

ρ(T n+m(x)− Tm(x0)) ≤ αm(x0)ρ(T n(x)− x0). (4.5)

If let n go to infinity, we get

τ(Tm(x0)) ≤ αm(x0)τ (x0), (4.6)

which implies

τ(x0) = inf{τ(x); x ∈ K} ≤ τ(Tm(x0)) ≤ αm(x0)τ (x0). (4.7)

Passing with m to infinity we get τ(x0) ≤ α(x0)τ (x0) which forces τ(x0) = 0 as α(x0) < 1. Hence, ρ(T n(x) − x0)→ 0
as n→∞. By the ρ-continuity of T , this forces x0 to be a fixed point of T . �

Similarly aswe did in the case of pointwise contractions, wewill use ρ-a.e. Strong Opial property of the functionmodular
to prove the next fixed point theorem for asymptotic pointwise contractions.

Theorem 4.2. Let ρ ∈ <. Assume that Lρ has the ρ-a.e. Strong Opial property. Let K ⊂ Eρ be a nonempty, ρ-a.e. compact
convex subset such that δρ(βK) = sup{ρ(β(x − y)); x, y ∈ K} < ∞, for some β > 1. Then any T : K → K asymptotic
pointwise ρ-contraction has a unique fixed point x0 ∈ K. Moreover the orbit {T n(x)} converges to x0, for any x ∈ K.

Proof. Using Theorem 2.3, it is enough to show that T has a fixed point. Indeed let us fix x ∈ K and define the ρ-type by

τ(u) = lim sup
n→∞

ρ(T n(x)− u), (4.8)

for u ∈ K . By Lemma 3.3 applied with λ(u) = τ(u), C = K , λn(u) = ρ(T n(x)− u), and with yn = T n(x) chosen for all y ∈ K ,
there exists x0 ∈ K such that

τ(x0) = inf{τ(x); x ∈ K}. (4.9)

Using the same argument as in the proof of Theorem 4.1, we will get τ(x0) = 0. Hence, ρ(T n(x) − x0)→ 0 as n→∞. By
the ρ-continuity of T , this forces x0 to be a fixed point of T . �
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